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Syntax Extensions

Before talking about Rust's different macro systems it is worthwhile to discuss the general
mechanism they are built on: syntax extensions.

To do that, we must first discuss how Rust source is processed by the compiler, and the
general mechanisms on which user-defined macros and proc-macros are built upon.

Note: This book will use the term syntax extension from now on when talking about all
of rust's different macro kinds in general to reduce potential confusion with the
upcoming declarative macro 2.0 proposal which uses the macro keyword.



https://github.com/rust-lang/rust/issues/39412

Source Analysis

Tokenization

The first stage of compilation for a Rust program is tokenization. This is where the source
text is transformed into a sequence of tokens (i.e. indivisible lexical units; the programming
language equivalent of "words"). Rust has various kinds of tokens, such as:

Identifiers: foo, Bambous, self, we_can_dance, LaCaravane, ...
Literals: 42, 72u32, ©
Keywords: _, fn, self, match, yield, macro, ..

0, 1.0e-40, "ferris was here", ...

Symbols: [, :, iz, 2, ~, @, ..

...among others. There are some things to note about the above: first, self is both an
identifier and a keyword. In almost all cases, self is a keyword, but it is possible for it to be
treated as an identifier, which will come up later (along with much cursing). Secondly, the list
of keywords includes some suspicious entries such as yield and macro that aren't actually
in the language, but are parsed by the compiler—these are reserved for future use. Third,
the list of symbols also includes entries that aren't used by the language. In the case of <-,
it is vestigial: it was removed from the grammar, but not from the lexer. As a final point, note
that :: is a distinct token; it is not simply two adjacent : tokens. The same is true of all

multi-character symbol tokens in Rust, as of Rust 1.2.2

T @ has a purpose, though most people seem to forget about it completely: it is used in patterns to
bind a non-terminal part of the pattern to a name.

2 Technically rust currently(1.46) has two lexers, rustc_lexer which only emits single character
symbols as tokens and the lexer in rustc_parse which sees multi-character symbols as distinct
tokens.

As a point of comparison, it is at this stage that some languages have their macro layer,
though Rust does not. For example, C/C++ macros are effectively processed at this point. 3

This is why the following code works:

#define SUB 1int
#define BEGIN {
#define END }

SUB main() BEGIN
printf("Oh, the horror!\n");
END


https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization
https://doc.rust-lang.org/reference/keywords.html#reserved-keywords
https://github.com/rust-lang/rust/tree/master/compiler/rustc_lexer
https://github.com/rust-lang/rust/tree/master/compiler/rustc_parse/src/lexer
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3 n fact, the C preprocessor uses a different lexical structure to C itself, but the distinction is broadly
irrelevant.

4 Whether it should work is an entirely different question.

Parsing

The next stage is parsing, where the stream of tokens is turned into an Abstract Syntax Tree
(AST). This involves building up the syntactic structure of the program in memory. For
example, the token sequence 1 + 2 is transformed into the equivalent of:

BinOp LitInt
op: Add J val: 1
lhs:

rhs:
—l— LitInt

val: 2

The AST contains the structure of the entire program, though it is based on purely lexical
information. For example, although the compiler may know that a particular expression is
referring to a variable called a, at this stage, it has no way of knowing what a is, or even
where it comes from.

It is after the AST has been constructed that macros are processed. However, before we can
discuss that, we have to talk about token trees.

Token trees

Token trees are somewhere between tokens and the AST. Firstly, almost all tokens are also
token trees; more specifically, they are leaves. There is one other kind of thing that can be a
token tree leaf, but we will come back to that later.

The only basic tokens that are not leaves are the "grouping" tokens: (...), [...],and
{...}.These three are the interior nodes of token trees, and what give them their structure.
To give a concrete example, this sequence of tokens:

a+ b+ (c+d[O]) + e

would be parsed into the following token trees:


https://en.wikipedia.org/wiki/Abstract_syntax_tree

«a» «+» «b» «+» «(

f

)» «+» «e»

1
«C» «t+» «d» «[ I»

—

«@»

Note that this has no relationship to the AST the expression would produce; instead of a
single root node, there are seven token trees at the root level. For reference, the AST would
be:

It is important to understand the distinction between the AST and token trees. When writing

macros, you have to deal with both as distinct things.

One other aspect of this to note: it is impossible to have an unpaired parenthesis, bracket or

BinOp
op: Add
lhs:
rhs:
BinOp 1— Var
op: Add name: e
lhs:
rhs:
Var BinOp BinOp
name: a —l_ op: Add op: Add
lhs: lhs:
rhs: rhs:
Var —r Var 1— Index
name: b name: c arr: o
J ind: o
Var
name: d
LitInt
val: 0O

brace; nor is it possible to have incorrectly nested groups in a token tree.




Macros in the AST

As previously mentioned, macro processing in Rust happens after the construction of the
AST. As such, the syntax used to invoke a macro must be a proper part of the language's
syntax. In fact, there are several "syntax extension" forms which are part of Rust's syntax.
Specifically, the following 4 forms (by way of examples):

1. # [ sarg 1;eg #[derive(Clone)], #[no_mangle], ...

2. # ! [ $arg ] ;6.8 #![allow(dead_code)], #![crate_name="blang"], ...
3. $name ! $arg;eg println!("Hi!"), concat!("a", "b"), ...

4. $name ! $argd $Sargl;e.g. macro_rules! dummy { () => {}; }.

The first two are attributes which annotate items, expressions and statements. They can be
classified into different kinds, built-in attributes, proc-macro attributes and derive attributes.
proc-macro attributes and derive attributes can be implemented with the second macro
system that Rust offers, procedural macros. built-in attributes on the other hand are
attributes implemented by the compiler.

The third form $name ! $arg are function-like macros. It is the form available for use with
macro_rules!, macro and also procedural macros. Note that this form is not /imited to
macro_rules! macros: it is a generic syntax extension form. For example, whilst format! is
a macro_rules! macro, format_args! (which is used toimplement format! )isnotasitisa
compiler builtin.

The fourth form is essentially a variation which is not available to macros. In fact, the only
case where this form is used at all is with the macro_rules! construct itself.

So, starting with the third form, how does the Rust parser know what the $arg in ( $name !
sarg ) looks like for every possible syntax extension? The answer is that it doesn't have to.
Instead, the argument of a syntax extension invocation is a single token tree. More
specifically, it is a single, non-leaf token tree; (...), [...],or {...}.With that knowledge,

it should become apparent how the parser can understand all of the following invocation
forms:


https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/attributes.html#built-in-attributes-index
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
https://doc.rust-lang.org/reference/procedural-macros.html#attribute-macros
https://doc.rust-lang.org/reference/procedural-macros.html#derive-macro-helper-attributes
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https://doc.rust-lang.org/std/macro.format.html
https://doc.rust-lang.org/std/macro.format_args.html
https://doc.rust-lang.org/std/macro.format.html

bitflags! {

struct Color: u8 {
const RED = 0bo00O1,
const GREEN = 0b0010,
const BLUE = 0b01l00O,
const BRIGHT = 0b1000,

}

lazy_static! {
static ref FIB_100: u32 = {
fn fib(a: u32) -> u32 {

match a {
0 => 0,
1=>1,
a => fib(a-1) + fib(a-2)
}
}
fib(100)
+s
}
fn main() {
use Color::x;
let colors = vec![RED, GREEN, BLUE];
println! ("Hello, World!");
}

Although the above invocations may look like they contain various kinds of Rust code, the
parser simply sees a collection of meaningless token trees. To make this clearer, we can

fn main() {
let colors = vec! i
println! i7;

}

contains, but doesn't try to understand them. This means i can be anything, even invalid
Rust! As to why this is a good thing, we will come back to that at a later point.

So, does this also apply to sarg in form 1 and 2, and to the two args in form 4? Kind of. The
sarg for form 1 and 2 is a bit different in that it is not directly a token tree, but a simple path
that is either followed by an = token and a literal expression, or a token tree. We will
explore this more in-depth in the appropriate proc-macro chapter. The important part here
is that this form as well, makes use of token trees to describe the input. The 4th form in
general is more special and accepts a very specific grammar that also makes use of token



trees though. The specifics of this form do not matter at this point so we will skip them until
they become relevant.

The important takeaways from this are:

e There are multiple kinds of syntax extensions in Rust.

e Just seeing something of the form $name! $arg, doesn't tell you what kind of syntax
extension it might be. It could be a macro_rules! macro, a proc-macro Or maybe
even a builtin.

e Theinputto every ! macro invocation, that is form 3, is a single non-leaf token tree.

e Syntax extensions are parsed as part of the abstract syntax tree.

The last point is the most important, as it has significant implications. Because syntax
extensions are parsed into the AST, they can only appear in positions where they are
explicitly supported. Specifically syntax extensions can appear in place of the following:

Patterns

Statements

Expressions

Items(this includes +impl items)
Types

Some things not on this list:

e |dentifiers
e Match arms
e Struct fields

There is absolutely, definitely no way to use syntax extensions in any position not on the first
list.



Expansion

Expansion is a relatively simple affair. At some point after the construction of the AST, but
before the compiler begins constructing its semantic understanding of the program, it will
expand all syntax extensions.

This involves traversing the AST, locating syntax extension invocations and replacing them
with their expansion.

Once the compiler has run a syntax extension, it expects the result to be parsable as one of
a limited set of syntax elements, based on context. For example, if you invoke a syntax
extension at module scope, the compiler will parse the result into an AST node that
represents an item. If you invoke a syntax extension in expression position, the compiler will
parse the result into an expression AST node.

In fact, it can turn a syntax extension result into any of the following:

e an expression,

e 3 pattern,

e atype,

e zero or more items, or

e zero or more statements.

In other words, where you can invoke a syntax extension determines what its result will be
interpreted as.

The compiler will take this AST node and completely replace the syntax extension's
invocation node with the output node. This is a structural operation, not a textual one!

For example, consider the following:
let eight = 2 * four!();

We can visualize this partial AST as follows:

Let
name: eight
init: o — | BinOp
op: Mul
lhs:
rhs:
LitInt —[- -1- Macro
val: 2 name: four

body: ()




From context, four! () must expand to an expression (the initializer can only be an
expression). Thus, whatever the actual expansion is, it will be interpreted as a complete
expression. In this case, we will assume four! is defined such that it expands to the
expression 1 + 3.As aresult, expanding this invocation will result in the AST changing to:

Let
name: eight
init: o — | BinOp
op: Mul
lhs: =
rhs:
LitInt —[- -1— BinOp
val: 2 op: Add
lhs: =
rhs:
LitInt —( 7— LitInt
val: 1 val: 3

This can be written out like so:
let eight = 2 * (1 + 3);

Note that we added parentheses despite them not being in the expansion. Remember that
the compiler always treats the expansion of a syntax extension as a complete AST node, not
as a mere sequence of tokens. To put it another way, even if you don't explicitly wrap a
complex expression in parentheses, there is no way for the compiler to "misinterpret" the
result, or change the order of evaluation.

It is important to understand that syntax extension expansions are treated as AST nodes, as
this design has two further implications:

¢ In addition to there being a limited number of invocation positions, syntax extension
can only expand to the kind of AST node the parser expects at that position.

e As a consequence of the above, syntax extension absolutely cannot expand to
incomplete or syntactically invalid constructs.

There is one further thing to note about expansion: what happens when a syntax extension

expands to something that contains another syntax extension invocation. For example,

consider an alternative definition of four! ; what happens if it expandsto 1 + three!() ?
let x = four!();

Expands to:

let x = 1 + three!();



This is resolved by the compiler checking the result of expansions for additional syntax
extension invocations, and expanding them. Thus, a second expansion step turns the above
into:

let x =1 + 33

The takeaway here is that expansion happens in "passes"; as many as is needed to
completely expand all invocations.

Well, not quite. In fact, the compiler imposes an upper limit on the number of such recursive
passes it is willing to run before giving up. This is known as the syntax extension recursion
limit and defaults to 128. If the 128th expansion contains a syntax extension invocation, the
compiler will abort with an error indicating that the recursion limit was exceeded.

This limit can be raised using the #![recursion_limit=".."] attribute, though it must be

done crate-wide. Generally, it is recommended to try and keep syntax extension below this
limit wherever possible as it may impact compilation times.


https://doc.rust-lang.org/reference/attributes/limits.html#the-recursion_limit-attribute

Hygiene

Hygiene is an important concept for macros. It describes the ability for a macro to work in its
own syntax context, not affecting nor being affected by its surroundings. In other words this
means that a syntax extension should be invocable anywhere without interfering with its
surrounding context.

In a perfect world all syntax extensions in Rust would be fully hygienic, unfortunately this
isn't the case, so care should be taken to avoid writing syntax extensions that aren't fully
hygienic. We will go into general hygiene concepts here which will be touched upon in the
corresponding hygiene chapters for the different syntax extensions Rust has to offer.

Hygiene mainly affects identifiers and paths emitted by syntax extensions. In short, if an
identifier created by a syntax extension cannot be accessed by the environment where the
syntax extension has been invoked it is hygienic in regards to that identifier. Likewise, if an
identifier used in a syntax extension cannot reference something defined outside of a
syntax extension it is considered hygienic.

Note: The terms create and use refer to the position the identifier is in. That is the

Foo iN struct Foo {} orthe foo in let foo = ..; are created in the sense that they
introduce something new under the name, but the Foo in fn foo(_: Foo) {} orthe
foo in foo + 3 are usages in the sense that they are referring to something existing.

This is best shown by example.

Let's assume we have some syntax extension make_local that expandsto let local = 03,
that is it creates the identifier local. Then given the following snippet:

make_Tlocal! ();
assert_eq! (local, 0);

If the local in assert_eq!(local, 0); resolves to the local defined by the syntax
extension, the syntax extension is not hygienic (at least in regards to local names/bindings).

Now let's assume we have some syntax extension use_local that expandsto local = 42;,
that is it makes use of the identifier local. Then given the following snippet:

let mut local = 0;
use_local!();



If the local inside of the syntax extension for the given invocation resolves to the local
defined before its invocation, the syntax extension is not hygienic either.

This is a rather short introduction to the general concept of hygiene. It will be explained in
more depth in the corresponding macro_rules! hygiene and proc-macro hygiene
chapters, with their specific peculiarities.


https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://veykril.github.io/tlborm/proc-macros/hygiene.html

Debugging

rustc provides a number of tools to debug general syntax extensions, as well as some
more specific ones tailored towards declarative and procedural macros respectively.

Sometimes, it is what the extension expands to that proves problematic as you do not
usually see the expanded code. Fortunately rustc offers the ability to look at the expanded

code via the unstable -Zunpretty=expanded argument. Given the following code:

// Shorthand for {initializing a "String’.
macro_rules! S {
($e:expr) => {String::from($Se)};

}
fn main() {
let world = S!("World");
println! ("Hello, {}!", world);
}

compiled with the following command:
rustc +nightly -Zunpretty=expanded hello.rs
produces the following output (modified for formatting):

#![feature(prelude_import)]

#[prelude_import]

use std::prelude::rust_2018::x*;

#[macro_use]

extern crate std;

// Shorthand for {initializing a “String .

macro_rules! S { ($Se : expr) => { String :: from($e) } ; 1}

fn main() {
let world = String::from("World");
{
tistd:iio::_print(
t:core::fmt::Arguments: :new_v1(
&["Hello, u’ " \nu] ,
&match (&world,) {
(argd,) => [
s:core::fmt::ArgumentVli: :new(argo,
t:core::fmt::Display::fmt)
1,
}

)5
s



But not just rustc exposes means to aid in debugging syntax extensions. For the
aforementioned -zunpretty=expanded option, there exists a nice cargo plugin called
cargo-expand made by dtolnay which is basically just a wrapper around it.

You can also use the playground, clicking on its TooLS button in the top right gives you the
option to expand syntax extensions as well!


https://github.com/dtolnay/cargo-expand
https://github.com/dtolnay
https://play.rust-lang.org/

Declarative Macros

This chapter will introduce Rust's declarative macro system: macro_rules! .
There are two different introductions in this chapter, a methodical and a practical.

The former will attempt to give you a complete and thorough explanation of how the system
works, while the latter one will cover more practical examples. As such, the methodical
introduction is intended for people who just want the system as a whole explained, while
the practical introduction guides one through the implementation of a single macro.

Following up the two introductions it offers some generally very useful patterns and building
blocks for creating feature-rich macros.

Other resources about declarative macros include the Macros chapter of the Rust Book
which is a more approachable, high-level explanation as well as the reference chapter which
goes more into the precise details of things.

Note: This book will usually use the term mbe(Macro-By-Example), mbe macro or
macro_rules! macro when talking about macro_rules! macros.
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Macros, A Methodical Introduction

This chapter will introduce Rust's declarative Macro-By-Example system by explaining the
system as a whole. It will do so by first going into the construct's syntax and its key parts and
then following it up with more general information that one should at least be aware of.

macro_rules!

With all that in mind, we can introduce macro_rules! itself. As noted previously,
macro_rules! is jtself a syntax extension, meaning it is technically not part of the Rust
syntax. It uses the following forms:

macro_rules! $name {
$rule0® ;
$rulel ;

/]
$ruleN ;

There must be at least one rule, and you can omit the semicolon after the last rule. You can
use brackets( [] ), parentheses( () ) or braces( {}).

Each "rule" looks like the following:
($matcher) => {$Sexpansion}

Like before, the types of parentheses used can be any kind, but parentheses around the
matcher and braces around the expansion are somewhat conventional. The expansion part
of arule is also called its transcriber.

Note that the choice of the parentheses does not matter in regards to how the mbe macro
may be invoked. In fact, function-like macros can be invoked with any kind of parentheses as
well, but invocationswith { .. } and ( ... );, notice the trailing semicolon, are special in
that their expansion will always be parsed as an item.

If you are wondering, the macro_rules! invocation expands to... nothing. At least, nothing
that appears in the AST; rather, it manipulates compiler-internal structures to register the
mbe macro. As such, you can technically use macro_rules! in any position where an empty
expansion is valid.


https://doc.rust-lang.org/reference/macros-by-example.html

Matching

When a macro_rules! macro is invoked, the macro_rules! interpreter goes through the
rules one by one, in declaration order. For each rule, it tries to match the contents of the
input token tree against that rule's matcher . A matcher must match the entirety of the input
to be considered a match.

If the input matches the matcher, the invocation is replaced by the expans+ion; otherwise,
the next rule is tried. If all rules fail to match, the expansion fails with an error.

The simplest example is of an empty matcher:

macro_rules! four {
() =>{1+313;
}

This matches if and only if the input is also empty (i.e. four! (), four![] Or four!{}).

Note that the specific grouping tokens you use when you invoke the function-like macro are
not matched, they are in fact not passed to the invocation at all. That is, you can invoke the
above macro as four![] and it will still match. Only the contents of the input token tree are
considered.

Matchers can also contain literal token trees, which must be matched exactly. This is done
by simply writing the token trees normally. For example, to match the sequence 4 fn
['spang "whammo"] @_@, you would write:

macro_rules! gibberish {
(4 fn ['spang "whammo"] @_@) => {...};
}

You can use any token tree that you can write.

Metavariables

Matchers can also contain captures. These allow input to be matched based on some
general grammar category, with the result captured to a metavariable which can then be
substituted into the output.

Captures are written as a dollar ( $ ) followed by an identifier, a colon ( : ), and finally the
kind of capture which is also called the fragment-specifier, which must be one of the
following:

® block: a block (i.e. a block of statements and/or an expression, surrounded by braces)
® expr:anexpression


https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr

e dent:an identifier (this includes keywords)

* item:an item, like a function, struct, module, impl, etc.

e Tlifetime:alifetime(e.g. 'foo, 'static,...)

e literal:a literal (e.g. "Hello World!", 3.14, '@&"',..)

e meta:a meta item; the things that go inside the #[...] and #![...] attributes
®* pat:apattern

e path:apath(e.g. foo, ::std::mem::replace, transmute::<_, int>,...)
e stmt:a statement

e tt:asingle token tree

e ty:atype

e vis:a possible empty visibility qualifier (e.g. pub, pub(in crate), ...)

For more in-depth description of the fragment specifiers, check out the Fragment Specifiers
chapter.

For example, here is a macro_rules! macro which captures its input as an expression
under the metavariable $e:

macro_rules! one_expression {
(Se:zexpr) => {...};
}

These metavariables leverage the Rust compiler's parser, ensuring that they are always
"correct". An expr metavariable will always capture a complete, valid expression for the
version of Rust being compiled.

You can mix literal token trees and metavariables, within limits (explained in Metavariables
and Expansion Redux).

To refer to a metavariable you simply write $name, as the type of the variable is already
specified in the matcher. For example:

macro_rules! times_five {
($e:expr) => { 5 x Se };
}

Much like macro expansion, metavariables are substituted as complete AST nodes. This
means that no matter what sequence of tokens is captured by $e, it will be interpreted as a
single, complete expression.

You can also have multiple metavariables in a single matcher:

macro_rules! multiply_add {
(Sa:expr, $b:expr, Sci:expr) => { $a * ($b + $c) };
}

And use them as often as you like in the expansion:
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macro_rules! discard {
($e:expr) => {};
}

macro_rules! repeat {
(Se:expr) => { Se; Se; Se; };
}

There is also a special metavariable called $crate which can be used to refer to the current
crate.

Repetitions

Matchers can contain repetitions. These allow a sequence of tokens to be matched. These
have the general form $ ( ... ) sep rep.

$ is a literal dollar token.

e ( ... ) istheparen-grouped matcher being repeated.

e sep is an optional separator token. It may not be a delimiter or one of the repetition
operators. Common examples are , and ;.

rep is the required repeat operator. Currently, this can be:

o ?:indicating at most one repetition
o x:indicating zero or more repetitions
o +:indicating one or more repetitions

Since ? represents at most one occurrence, it cannot be used with a separator.

Repetitions can contain any other valid matcher, including literal token trees, metavariables,
and other repetitions allowing arbitrary nesting.

Repetitions use the same syntax in the expansion and repeated metavariables can only be
accessed inside of repetitions in the expansion.

For example, below is a mbe macro which formats each element as a string. It matches zero
or more comma-separated expressions and expands to an expression that constructs a
vector.
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macro_rules! vec_strs {

(
// Start a repetition:

$(
// Each repeat must contain an expression...
$element:expr

)

// ...separated by commas...

b

// ...zero or more times.

*

) => {

// Enclose the expansion in a block so that we can use
// multiple statements.

{
let mut v = Vec::new();
// Start a repetition:
$(
// Each repeat will contain the following statement, with
// $element replaced with the corresponding expression.
v.push(format! ("{}", $element));
) *
v
}
}s
}
fn main() {
let s = vec_strs![1, "a", true, 3.14159f32];
assert_eq! (s, &["1", "a", "true'", "3.14159"]);
}

You can repeat multiple metavariables in a single repetition as long as all metavariables
repeat equally often. So this invocation of the following macro works:

macro_rules! repeat_two {
($($i:ident)*, $($i2:ident)x) => {
$( let $i: ()3 let $i2: ()5 )*
}
}

repeat_two!( abcde f, uvwxyz);

But this does not:

repeat_two!( abcde f, xy z);

failing with the following error



error: meta-variable "i° repeats 6 times, but 'i2° repeats 3 times
--> src/main.rs:6:10

|
$( let $i: ()3 let $i2: () )*

| ANANAANANANANNANNANANANANANANANAN

6

Metavariable Expressions

RFC: rfcs#1584
Tracking Issue: rust#83527
Feature: #![feature(macro_metavar_expr)]

Transcriber can contain what is called metavariable expressions. Metavariable expressions
provide transcribers with information about metavariables that are otherwise not easily
obtainable. With the exception of the $$ expression, these have the general form $ {
op(...) }.Currently all metavariable expressions but $$ deal with repetitions.

The following expressions are available with ident being the name of a bound
metavariable and depth being an integer literal:

e ${count(ident)}:The number of times $ident repeats in the inner-most repetition
in total. This is equivalent to ${count(ident, 0)}.

${count(ident, depth)}:The number of times $ident repeats in the repetition at
depth.

${index ()} : The current repetition index of the inner-most repetition. This is
equivalentto ${index(0)}.

${index(depth)} : The current index of the repetition at depth, counting outwards.
${length()} : The number of times the inner-most repetition will repeat for. This is
equivalentto ${length(0)}.

${length(depth)} : The number of times the repetition at depth will repeat for,
counting outwards.

${ignore(ident)} : Binds $ident for repetition, while expanding to nothing.

$$ : Expands to a single $, effectively escaping the $ token so it won't be transcribed.

For the complete grammar definition you may want to consult the Macros By Example
chapter of the Rust reference.
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Macros, A Practical Introduction

This chapter will introduce Rust's declarative Macro-By-Example system using a relatively
simple, practical example. It does not attempt to explain all of the intricacies of the system;
its goal is to get you comfortable with how and why macros are written.

There is also the Macros chapter of the Rust Book which is another high-level explanation,
and the methodical introduction chapter of this book, which explains the macro system in
detail.

A Little Context

Note: don't panic! What follows is the only math that will be talked about. You can
quite safely skip this section if you just want to get to the meat of the article.

If you aren't familiar, a recurrence relation is a sequence where each value is defined in
terms of one or more previous values, with one or more initial values to get the whole thing
started. For example, the Fibonacci sequence can be defined by the relation:

Fnzoala"-aFn—2+Fn—1

Thus, the first two numbers in the sequence are 0 and 1, with the third being
Fy+ F, =041 =1, thefourth F} + Fy, =1+ 1 = 2, and so on forever.

Now, because such a sequence can go on forever, that makes defining a fibonacci function
a little tricky, since you obviously don't want to try returning a complete vector. What you
want is to return something which will lazily compute elements of the sequence as needed.

In Rust, that means producing an Iterator . This is not especially hard, but there is a fair

amount of boilerplate involved: you need to define a custom type, work out what state
needs to be stored in it, then implement the Iterator trait for it.

However, recurrence relations are simple enough that almost all of these details can be
abstracted out with a little macro_rules! macro-based code generation.

So, with all that having been said, let's get started.
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Construction

Usually, when working on a new macro_rules! macro, the first thing | do is decide what the
invocation should look like. In this specific case, my first attempt looked like this:

let fib = recurrence![a[n] = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }

From that, we can take a stab at how the macro_rules! macro should be defined, even if
we aren't sure of the actual expansion. This is useful because if you can't figure out how to
parse the input syntax, then maybe you need to change it.

macro_rules! recurrence {
( a[n] = $($inits:expr),+ , ... , S$recurzexpr ) => { /x ... x/ };

3

Assuming you aren't familiar with the syntax, allow me to elucidate. This is defining a syntax
extension, using the macro_rules! system, called recurrence! . This macro_rules! macro
has a single parsing rule. That rule says the input to the invocation must match:

the literal token sequence a [ n ] =,

e arepeating (the $( ... ))sequence, using , as a separator, and one or more ( +)
repeats of:
o avalid expression captured into the metavariable inits ($inits:expr)
e the literal token sequence , ... ,,

a valid expression captured into the metavariable recur ($recur:expr).

Finally, the rule says that if the input matches this rule, then the invocation should be
replaced by the token sequence /x ... %/.

It's worth noting that -inits, as implied by the name, actually contains all the expressions
that match in this position, not just the first or last. What's more, it captures them as a
sequence as opposed to, say, irreversibly pasting them all together. Also note that you can do
"zero or more" with a repetition by using * instead of + and even optional, "zero or one"
with 7.

As an exercise, let's take the proposed input and feed it through the rule, to see how it is
processed. The "Position" column will show which part of the syntax pattern needs to be
matched against next, denoted by a "a". Note that in some cases, there might be more than
one possible "next" element to match against. "Input" will contain all of the tokens that have
not been consumed yet. inits and recur will contain the contents of those bindings.

Position Input inits

5($inits:expr),+ , ... , Srecur:expr a[ln] =0, 1, ..., a[n-2] + a[n-1]

5($inits:expr),+ , ... , $recur:expr [n] =0, 1, ..., a[n-2] + a[n-1]
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Position Input inits

5($inits:expr),+ , ... , $recur:expr n] =0, 1, ..., a[n-2] + a[n-1]
5($inits:expr),+ , ... , Srecur:expr ] =0, 1, ..., a[n-2] + a[n-1]
5($inits:expr),+ , ... , Srecur:expr =0, 1, ..., a[n-2] + a[n-1]
§($inits:expr),+ , ... , Srecur:expr 0, 1, ..., a[n-2] + a[n-1]
S(ainits:expr),+ , «.. , Srecur:expr 0, 1, ..., a[n-2] + a[n-1]
S($inits:expr)6+ At $recur:expr , 1, ..., a[n-2] + a[n-1] 0

re are two o here, because the next input token might match either the comma separator between elements in the re
ifter the repetition. The macro system will keep track of both possibilities, until it is able to decide which one to follow

;(Sﬁnits:expr),+ s at $recur:expr 1, ..., a[n-2] + a[n-1] 0

S($inits:expr)é+ Adt Srecur:expr sy «eey aln-2] + a[n-1] 0, 1

third, crossed-out marker indicates that the macro system has, as a consequence of the last token consumed, elimir

possible branches.

S(ainits:expr),+ IUXER Srecur:expr ...y aln-2] + a[n-1] 0, 1
;(ginits:expr),+ RPN Srecur:expr , a[n-2] + a[n-1] 0, 1
5(Sinits:expr),+ , ... , Srecur:expr a[n-2] + a[n-1] 0, 1
s5($inits:expr),+ , ... , $recur:expr0 0, 1 i

» particular step should make it clear that a binding like $recur:expr will consume an entire expression, using the con

onstitutes a valid expression. As will be noted later, you can do this for other language constructs, too.

The key take-away from this is that the macro system will try to incrementally match the
tokens provided as input to the macro against the provided rules. We'll come back to the
"try" part.

Now, let's begin writing the final, fully expanded form. For this expansion, | was looking for
something like:

let fib = {
struct Recurrence {
mem: [u64; 2],
pos: usize,

This will be the actual iterator type. mem will be the memo buffer to hold the last few values
so the recurrence can be computed. pos is to keep track of the value of n.

Aside: I've chosen u64 as a "sufficiently large" type for the elements of this sequence.
Don't worry about how this will work out for other sequences; we'll come to it.




impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<Self::Item> {
if self.pos < 2 {

let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)

We need a branch to yield the initial values of the sequence; nothing tricky.

} else {
let a = /x something */;
let n = self.pos;

let next_val = a[n-2] + a[n-1];
self.mem.TODO_shuffle_down_and_append(next_val);

self.pos += 1;
Some (next_val)

This is a bit harder; we'll come back and look at how exactly to define a. Also,
TODO_shuffle_down_and_append is another placeholder; | want something that places
next_val on the end of the array, shuffling the rest down by one space, dropping the Oth
element.

Recurrence { mem: [0, 1], pos: 0 }
}s

for e in fib.take(10) { println!("{}", e) }

Lastly, return an instance of our new structure, which can then be iterated over. To
summarize, the complete expansion is:



let fib = {
struct Recurrence {
mem: [u64; 2],
pos: usize,

}

impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<u64> {

if self.pos < 2 {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)

} else {
let a /* something */;
let n = self.pos;
let next_val = (a[n-2] + a[n-1]);

self.mem.TODO_shuffle_down_and_append(next_val.clone());
self.pos += 1;

Some (next_val)

}

Recurrence { mem: [0, 1], pos: 0 }

}s

for e in fib.take(10) { println!("{}", e) }

Aside: Yes, this does mean we're defining a different Recurrence struct and its
implementation for each invocation. Most of this will optimise away in the final binary.

It's also useful to check your expansion as you're writing it. If you see anything in the
expansion that needs to vary with the invocation, but isn't in the actual accepted syntax of
our macro, you should work out where to introduce it. In this case, we've added u64 , but
that's not necessarily what the user wants, nor is it in the macro syntax. So let's fix that.

macro_rules! recurrence {
( a[n]: $sty:ty = $($inits:expr),+ , ... , $recur:expr ) => { /*x ... */ };
}

/*

let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
*/

Here, I've added a new metavariable: sty which should be a type.



Aside: if you're wondering, the bit after the colon in a metavariable can be one of
several kinds of syntax matchers. The most common ones are item, expr,and ty.A
complete explanation can be found in Macros, A Methodical Introduction;
macro_rules! (Matchers).

There's one other thing to be aware of: in the interests of future-proofing the language,
the compiler restricts what tokens you're allowed to put after a matcher, depending on
what kind it is. Typically, this comes up when trying to match expressions or
statements; those can only be followed by one of =>, | ,and ;.

A complete list can be found in Macros, A Methodical Introduction; Minutiae;
Metavariables and Expansion Redux.

Indexing and Shuffling

| will skim a bit over this part, since it's effectively tangential to the macro-related stuff. We
want to make it so that the user can access previous values in the sequence by indexing a;
we want it to act as a sliding window keeping the last few (in this case, 2) elements of the
sequence.

We can do this pretty easily with a wrapper type:

struct IndexOffset<'a> {
slice: &'a [u64; 2],
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = 1index - offset + window;
&self.slice[real_index.0]

Aside: since lifetimes come up a /ot with people new to Rust, a quick explanation: 'a
and 'b are lifetime parameters that are used to track where a reference (i.e. a
borrowed pointer to some data) is valid. In this case, Index0ffset borrows a
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reference to our iterator's data, so it needs to keep track of how long it's allowed to
hold that reference for, using 'a.

'b is used because the Index::index function (which is how subscript syntax is
actually implemented) is also parameterized on a lifetime, on account of returning a
borrowed reference. 'a and 'b are not necessarily the same thing in all cases. The
borrow checker will make sure that even though we don't explicitly relate 'a and 'b
to one another, we don't accidentally violate memory safety.

This changes the definition of a to:
let a = IndexOffset { slice: &self.mem, offset: n };
The only remaining question is what to do about TODO_shuffle_down_and_append . | wasn't

able to find a method in the standard library with exactly the semantics | wanted, but it isn't
hard to do by hand.

{
use std::mem: :swap;
let mut swap_tmp = next_val;
for i in (0..2).rev() {
swap (&mut swap_tmp, &mut self.mem[i]);
}
}

This swaps the new value into the end of the array, swapping the other elements down one
space.

Aside: doing it this way means that this code will work for non-copyable types, as well.

The working code thus far now looks like this:



macro_rules! recurrence {

( a[n]: $sty:ty = $($inits:expr),+ , ... , $recur:expr ) => { /*x ... */ };
}
fn main() {

/*

let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }
*/
let fib = {

use std::ops::Index;

struct Recurrence {
mem: [u64; 2],
pos: usize,

}

struct IndexOffset<'a> {
slice: &'a [u64; 2],
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
&self.slice[real_index.0]

}

impl Iterator for Recurrence {
type Item = u64;

#[inline]
fn next(&mut self) -> Option<u64> {
if self.pos < 2 {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)
} else {
let next_val = {
let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset: n };
a[n-2] + a[n-1]
}s

use std::mem: :swap;



let mut swap_tmp = next_val;
for i 1in [1,0] {
swap (&mut swap_tmp, &mut self.mem[i]);
}
}

self.pos += 1;
Some (next_val)

}

Recurrence { mem: [0, 1], pos: 0O }

s

for e in fib.take(10) { println!("{}", e) }

Note that I've changed the order of the declarations of n and a, as well as wrapped
them(along with the recurrence expression) in a block. The reason for the first should be
obvious( n needs to be defined first so | can use it for a ). The reason for the second is that
the borrowed reference &self.mem will prevent the swaps later on from happening (you
cannot mutate something that is aliased elsewhere). The block ensures that the &self.mem
borrow expires before then.

Incidentally, the only reason the code that does the mem swaps is in a block is to narrow the
scope in which std::mem::swap is available, for the sake of being tidy.

If we take this code and run it, we get:

o ulwNKEKFEO

13
21
34

Success! Now, let's copy & paste this into the macro expansion, and replace the expanded
code with an invocation. This gives us:



macro_rules! recurrence {
( a[n]: $sty:ty = $($inits:expr),+ , ... , Srecur:expr ) => {
{
/*
What follows here 1is xliterally* the code from before,
cut and pasted into a new position. No other changes
have been made.

*/
use std::ops::Index;

struct Recurrence {
mem: [u64; 2],
pos: usize,

}

struct IndexOffset<'a> {
slice: &'a [u64; 2],
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = u64;

fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;

let index = Wrapping(index)
let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
&self.slice[real_index.0]

}

impl Iterator for Recurrence {
type Item = u64;

fn next(&mut self) -> Option<u64> {
if self.pos < 2 {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)
} else {
let next_val = {
let n = self.pos;
let a IndexOffset { slice: &self.mem, offset:

}s3
(a[n-2] + a[n-1])
}s

use std::mem::swap;

let mut swap_tmp = next_val;
for i in (0..2).rev() {



swap (&mut swap_tmp, &mut self.mem[i]);

}

self.pos += 1;
Some (next_val)

}
}
}
Recurrence { mem: [0, 1], pos: 0 }
}
}s
}
fn main() {
let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];
for e in fib.take(10) { println!("{}", e) }
}

Obviously, we aren't using the metavariables yet, but we can change that fairly easily.
However, if we try to compile this, rustc aborts, telling us:

error: local ambiguity: multiple parsing options: built-in NTs expr ('inits')
or 1 other option.
--> src/main.rs:75:45

|
75 | let fib = recurrence![a[n]: u64 = 0, 1, ..., a[n-2] + a[n-1]];

Here, we've run into a limitation of the macro_rules system. The problem is that second
comma. When it sees it during expansion, macro_rules can't decide if it's supposed to
parse another expression for inits, or ....Sadly, itisn't quite clever enough to realise
that ... isn't a valid expression, so it gives up. Theoretically, this should work as desired,
but currently doesn't.

Aside: | did fib a little about how our rule would be interpreted by the macro system. In
general, it should work as described, but doesn't in this case. The macro_rules
machinery, as it stands, has its foibles, and its worthwhile remembering that on
occasion, you'll need to contort a little to get it to work.

In this particular case, there are two issues. First, the macro system doesn't know what
does and does not constitute the various grammar elements (e.g. an expression); that's
the parser's job. As such, it doesn't know that ... isn't an expression. Secondly, it has
no way of trying to capture a compound grammar element (like an expression) without
100% committing to that capture.

In other words, it can ask the parser to try and parse some input as an expression, but
the parser will respond to any problems by aborting. The only way the macro system



can currently deal with this is to just try to forbid situations where this could be a
problem.

On the bright side, this is a state of affairs that exactly no one is enthusiastic about. The
macro keyword has already been reserved for a more rigorously-defined future macro
system. Until then, needs must.

Thankfully, the fix is relatively simple: we remove the comma from the syntax. To keep
things balanced, we'll remove both commas around ... :

macro_rules! recurrence {

( a[n]: $sty:ty = $($inits:expr),+ ... Srecur:expr ) => {

// A~~ changed
/* .. %/

}s
}
fn main() {

let fib = recurrence![a[n]: u64 = 0, 1 ... a[n-2] + a[n-1]];
// A~~ changed

for e in fib.take(10) { println!("{}", e) }
}

Success! ... or so we thought. Turns out this is being rejected by the compiler nowadays,
while it was fine back when this was written. The reason for this is that the compiler now
recognizes the ... asatoken, and as we know we may only use =>, , or ; afteran
expression fragment. So unfortunately we are now out of luck as our dreamed up syntax will
not work out this way, so let us just choose one that looks the most befitting that we are
allowed to use instead, I'd say replacing , with ; works.

macro_rules! recurrence {

( a[n]: $sty:ty = $($inits:expr),+ 5 ... ; Srecur:expr ) => {

// A A changed
/* .. X/

}s
}
fn main() {

let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];
// A~~~~h changed

for e in fib.take(10) { println!("{}", e) }
}

Success! But for real this time.


https://github.com/rust-lang/rust/issues/39412
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Substitution

Substituting something you've captured in a macro is quite simple; you can insert the
contents of a metavariable $sty:ty by using $sty . So, let's go through and fix the ue4 s:



macro_rules! recurrence {
( a[n]: $sty:ty = $($inits:expr),+ ; ... ; Srecur:expr ) => {
{

use std::ops::Index;

struct Recurrence {
mem: [$sty; 2],
// A~~~ changed
pos: usize,

}

struct IndexOffset<'a> {
slice: &'a [$sty; 2],
// A~~~ changed
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = S$sty;

// A~~~ changed
#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b $sty {
// A~~~ changed

use std::num::Wrapping;

let index = Wrapping(index);

let offset = Wrapping(self.offset);
let window = Wrapping(2);

let real_index = index - offset + window;
&self.slice[real_index.0]

}

impl Iterator for Recurrence {
type Item = $sty;

// A~~~ changed
#[inline]
fn next(&mut self) -> Option<$sty> {
// A~~~ changed
/* .. %/
}
}
Recurrence { mem: [0, 1], pos: 0 }
}
}s3
}
fn main() {
let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];

for e in fib.take(10) { println!("{}", e) }



Let's tackle a harder one: how to turn {inits into both the array literal [e, 1] and the
array type, [$sty; 2] . The first one we can do like so:

Recurrence { mem: [$($inits),+], pos: 0 }
// Nvmmmmmmmn changed

This effectively does the opposite of the capture: repeat inits one or more times,
separating each with a comma. This expands to the expected sequence of tokens: o, 1.

Somehow turning inits into a literal 2 is a little trickier. It turns out that there's no direct
way to do this, but we can do it by using a second macro_rules! macro. Let's take this one
step at a time.

macro_rules! count_exprs {
/*x 222 %/

}

The obvious case is: given zero expressions, you would expect count_exprs to expand to a
literal o.

macro_rules! count_exprs {

() => (0);

Aside: You may have noticed | used parentheses here instead of curly braces for the
expansion. macro_rules really doesn't care what you use, so long as it's one of the
"matcher" pairs: ( ), { } or [ 1.Infact, you can switch out the matchers on the
macro itself(i.e. the matchers right after the macro name), the matchers around the
syntax rule, and the matchers around the corresponding expansion.

You can also switch out the matchers used when you invoke a macro, but in a more
limited fashion: a macro invokedas { ... } or ( ... ); will always be parsed as an
item (i.e. like @ struct or fn declaration). This is important when using macros in a
function body; it helps disambiguate between "parse like an expression" and "parse
like a statement".

What if you have one expression? That should be a literal 1.

macro_rules! count_exprs {
() => (0);
(Se:texpr) => (1);



Two?

macro_rules! count_exprs {
() => (0);
($e:expr) => (1);
($e@:expr, Sel:expr) => (2);

We can "simplify" this a little by re-expressing the case of two expressions recursively.

macro_rules! count_exprs {

() => (0);

($etexpr) => (1);

($e0:expr, $el:expr) => (1 + count_exprs!(Sel));
// Novmmmmsmmmms v changed
}

This is fine since Rust can fold 1 + 1 into a constant value. What if we have three
expressions?

macro_rules! count_exprs {
() => (0);
($e:expr) => (1);
($e0:expr, $el:expr) => (1 + count_exprs!(Sel));
($e0:expr, $el:expr, Se2:expr) => (1 + count_exprs!($el, $e2));

Aside: You might be wondering if we could reverse the order of these rules. In this
particular case, yes, but the macro system can sometimes be picky about what it is and
is not willing to recover from. If you ever find yourself with a multi-rule macro that you
swear should work, but gives you errors about unexpected tokens, try changing the
order of the rules.

Hopefully, you can see the pattern here. We can always reduce the list of expressions by
matching one expression, followed by zero or more expressions, expanding that into 1 + a
count.

macro_rules! count_exprs {
() => (0);
($head:expr) => (1);
($head:expr, $(Stail:expr),*) => (1 + count_exprs!($(stail),*));
[ ] P o i changed



JETE: this is not the only, or even the best way of counting things. You may wish to
peruse the Counting section later for a more efficient way.

With this, we can now modify recurrence to determine the necessary size of mem .


https://veykril.github.io/tlborm/decl-macros/building-blocks/counting.html

// added:
macro_rules! count_exprs {
() => (0);
($head:expr) => (1);
($head:expr, $(Stail:expr),x) => (1 + count_exprs!($(Stail),*));

}
macro_rules! recurrence {
( a[n]: $sty:ty = $($inits:expr),+ ;3 ... ; Srecur:expr ) => {
{

use std::ops::Index;

const MEM_SIZE: usize = count_exprs! ($($inits),+);
// I\ N NN N added

struct Recurrence {
mem: [$sty; MEM_SIZE],
// Avmmmmon changed
pos: usize,

}

struct IndexOffset<'a> {
slice: &'a [$sty; MEM_SIZE],
// N changed
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = S$Ssty;

#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b S$sty {
use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);

// N changed

let real_index = index - offset + window;
&self.slice[real_index.0]

}

impl Iterator for Recurrence {
type Item = $sty;

#[inline]
fn next(&mut self) -> Option<$sty> {
if self.pos < MEM_SIZE {
// Avmvmmmn~ changed
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)
} else {
let next_val = {
let n = self.pos;



let a = IndexOffset { slice: &self.mem, offset:
}s3
(a[n-2] + a[n-1])
}s

use std::mem: :swap;

let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {
// Avmvmmmnn changed
swap (&mut swap_tmp, &mut self.mem[i]);

}

self.pos += 1;
Some (next_val)

}

Recurrence { mem: [$($inits),+], pos: 0 }

}s
}
/* .. %/

With that done, we can now substitute the last thing: the recur expression.

/* .. %/
#[inline]
fn next(&mut self) -> Option<u64> {
if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)
} else {
let next_val = {
let n = self.pos;
let a = IndexOffset { slice: &self.mem, offset:
}s
$recur
// Ao changed

use std::mem::swap;
let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {
swap (&mut swap_tmp, &mut self.mem[i]);
}
}
self.pos += 1;
Some (next_val)

[* oo %/



And, when we compile our finished macro_rules! macro...

error[E0425]: cannot find value “a’ 1in this scope
--> src/main.rs:68:50

I
68 | let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];
| A not found in this scope

error[E0425]: cannot find value ‘n’ 1in this scope
-=> src/main.rs:68:52

|
68 | let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];

| A not found 1in this
scope

error[E0425]: cannot find value “a’ 1in this scope
--> src/main.rs:68:59

I
68 | let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];

| A not found 1in
this scope

error[E0425]: cannot find value "n’ 1in this scope
--> src/main.rs:68:61

I
68 | let fib = recurrence![a[n]: u64 = 1, 1; ...; a[n-2] + a[n-1]];

| A not found 1in
this scope

... wait, what? That can't be right... let's check what the macro is expanding to.
$ rustc +nightly -Zunpretty=expanded recurrence.rs

The -Zunpretty=expanded argumenttells rustc to perform macro expansion, then turn

the resulting AST back into source code. The output (after cleaning up some formatting) is
shown below; in particular, note the place in the code where $recur was substituted:



#![feature(no_std)]
#![no_std]
#[prelude_1import]
use std::prelude::vl::x*;
#[macro_use]
extern crate std as std;
fn main() {
let fib = {
use std::ops::Index;
const MEM_SIZE: usize = 1 + 1;
struct Recurrence {
mem: [u64; MEM_SIZE],
pos: usize,
}
struct IndexOffset<'a> {
slice: &'a [u64; MEM_SIZE],
offset: usize,
}
impl <'a> Index<usize> for IndexOffset<'a> {
type Output = u64;
#[inline(always)]
fn index<'b>(&'b self, index: usize) -> &'b u64 {
use std::num::Wrapping;
let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);
let real_index = index - offset + window;
&self.slice[real_index.0]
}
}

impl Iterator for Recurrence {
type Item = u64;
#[inline]
fn next(&mut self) -> Option<u64> {
if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)
} else {
let next_val = {
let n = self.pos;

let a = IndexOffset{slice: &self.mem, offset:

a[ln - 1] + a[n - 2]

use std::mem: :swap;
let mut swap_tmp = next_val;
{
let result =
match
t:std::iter::Intolterator::into_iter((0..MEM_SIZE).rev()) {
mut iter => loop {

match ::std::iter::Iterator::next(&mut

iter) {

s:std::option::0Option::Some(i) => {

n,};

swap (&mut swap_tmp, &mut

self.mem[i]);



}

::std::option::0Option::None =>

break,
}
3
}s3
result
}
}
self.pos += 1;
Some (next_val)
}
}
}
Recurrence{mem: [0, 1], pos: 0,}
}s
{

let result =
match ::std::iter::IntolIterator::into_iter(fib.take(10)) {
mut iter => loop {
match ::std::iter::Iterator::next(&mut iter) {
::std::option::Option::Some(e) => {
sistdidios:_print(::std::fmt::Arguments: :new_v1(
{
static __STATIC_FMTSTR: &'static [&'static
str—] = &[Illl’ H\nll];
__STATIC_FMTSTR
1,
&match (&e,) {
(__argd,) =>
[::std::fmt::ArgumentVl::new(__arg0d, ::std::fmt::Display::fmt)],
}
))
}

::std::option::0Option::None => break,

s
}s

result

But that looks fine! If we add a few missing #![feature(...)] attributes and feed itto a
nightly build of rustc, it even compiles! ... what?!

Aside: You can't compile the above with a non-nightly build of rustc. This is because
the expansion of the println! macro depends on internal compiler details which are
not publicly stabilized.




Being Hygienic

The issue here is that identifiers in Rust syntax extensions are hygienic. That is, identifiers
from two different contexts cannot collide. To show the difference, let's take a simpler
example.

macro_rules! using_a {
($e:expr) => {
{
let a = 42;
Se

}

let four = using_al(a / 10);

This macro simply takes an expression, then wraps it in a block with a variable a defined.
We then use this as a round-about way of computing 4. There are actually two syntax
contexts involved in this example, but they're invisible. So, to help with this, let's give each
context a different colour. Let's start with the unexpanded code, where there is only a single
context:

macro_rules! using a {
($e:expr) => {
{
let a = 42;

$e

}
let four = using a!(a / 10);

Now, let's expand the invocation.

let four = {
let a = 42;
a/ 10

s

As you can see, the a that's defined by the macro invocation is in a different context to the
a we provided in our invocation. As such, the compiler treats them as completely different
identifiers, even though they have the same lexical appearance.

This is something to be really careful of when working on macro_rules! macros, syntax
extensions in general even: they can produce ASTs which will not compile, but which will
compile if written out by hand, or dumped using -Zunpretty=expanded .

The solution to this is to capture the identifier with the appropriate syntax context. To do that,
we need to again adjust our macro syntax. To continue with our simpler example:



macro_rules! using a {
($a:ident, $e:expr) => {

{
let $a = 42;

$e

}
let four = using al!(a, a / 10);

This now expands to:

let four = {
let a = 42;
a/ 10

}s

Now, the contexts match, and the code will compile. We can make this adjustment to our
recurrence! macro by explicitly capturing a and n. After making the necessary changes,
we have:



macro_rules! count_exprs {
() => (0);
($head:expr) => (1);

($head:expr, $(Stail:expr),x) => (1 + count_exprs!($(Stail),*));

}

macro_rules! recurrence {
( $seq:ident [ $ind:ident ]: S$sty:ty = $(S$inits:expr),+ ;

// N N changed
use std::ops::Index;
const MEM_SIZE: usize = count_exprs!($($inits),+);

struct Recurrence {
mem: [$sty; MEM_SIZE],
pos: usize,

}

struct IndexOffset<'a> {
slice: &'a [$sty; MEM_SIZE],
offset: usize,

}

impl<'a> Index<usize> for IndexOffset<'a> {
type Output = S$sty;

#[inline(always)]

fn index<'b>(&'b self, index: usize) -> &'b S$sty {

use std::num::Wrapping;

let index = Wrapping(index);
let offset = Wrapping(self.offset);
let window = Wrapping(MEM_SIZE);

let real_index = 1index - offset + window;
&self.slice[real_index.0]

}

impl Iterator for Recurrence {
type Item = S$sty;

#[inline]
fn next(&mut self) -> Option<$sty> {
if self.pos < MEM_SIZE {
let next_val = self.mem[self.pos];
self.pos += 1;
Some (next_val)

} else {
let next_val = {
let $ind = self.pos;
// A~~~ changed

3 Srecur:expr

let $seq = IndexOffset { slice: &self.mem, offset:

$ind };
// A~~~ changed



A~~~ changed

$recur
+s
{
use std::mem: :swap;
let mut swap_tmp = next_val;
for i in (0..MEM_SIZE).rev() {
swap (&mut swap_tmp, &mut self.mem[i]);
}
}

self.pos += 1;
Some (next_val)

}
}
}
Recurrence { mem: [$($inits),+], pos: O }
}
};
}
fn main() {
let fib = recurrence![a[n]: u64 = 0, 1; ...; a[n-2] + a[n-1]];
for e in fib.take(10) { println!("{}", e) }
}

And it compiles! Now, let's try with a different sequence.

for e 1in recurrence! (f[i]: f64 = 1.0; ...; f[i-1] * i as f64).take(10)
println! ("{}", e)
}

Which gives us:

ON R R

24

120
720
5040
40320
362880

Success!



Minutiae

This section goes through some of the finer details of the macro_rules! system. At a
minimum, you should try to be at least aware of these details and issues.



Fragment Specifiers

As mentioned in the methodical introduction chapter, Rust, as of 1.60, has 14 fragment
specifiers. This section will go a bit more into detail for some of them and shows a few
example inputs of what each matcher matches.

Note: Capturing with anything but the ident, lifetime and tt fragments will render
the captured AST opaque, making it impossible to further match it with other fragment
specifiers in future macro invocations.

® block

® expr

e -dent

e tem

o Tlifetime
® Tliteral
® meta

® pat

® pat_param
® path

® stmt

® tt

® ty

e Vvis

block

The block fragment solely matches a block expression, which consists of an opening {
brace, followed by any number of statements and finally followed by a closing } brace.

macro_rules! blocks {
($(Sblock:block)*) => ();

}
blocks! {
{}
{
let zig;
}
{2}
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expr

The expr fragment matches any kind of expression (Rust has a lot of them, given it is an
expression-oriented language).

macro_rules! expressions {
($(Sexpriexpr)x) => ();

}

expressions! {
"literal"
funcall()

future.await
break 'foo bar

ident

The -ident fragment matches an identifier or keyword.

macro_rules! idents {
($($ident:ident)x) => ();

}

idents! {
// _ <= This 1is not an 1ident, it is a pattern
foo
async
o_________ 0]
_____ o_____

}

1tem

The +item fragment simply matches any of Rust's item definitions, not identifiers that refer to
items. This includes visibility modifiers.


https://doc.rust-lang.org/reference/expressions.html
https://doc.rust-lang.org/reference/identifiers.html
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macro_rules! +ditems {
($($item:item)x) => ();

}

items! {
struct Foo;
enum Bar {

Baz

}
impl Foo {}
pub use crate::foo;
[*eoox/

}

lifetime

The lifetime fragment matches a lifetime or label. It's quite similar to ident but with a
prepended ' .

macro_rules! lifetimes {
($($lifetime:lifetime)*x) => ();
}

lifetimes! {
'static
'shiv

literal

The literal fragment matches any literal expression.

macro_rules! literals {
($($literal:literal)x) => ();

}
literals! {
-1
"hello world"
2.3
b'b'
true


https://doc.rust-lang.org/reference/tokens.html#lifetimes-and-loop-labels
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meta

The meta fragment matches the contents of an attribute. That is, it will match a simple path,

one without generic arguments followed by a delimited token tree or an = followed by a
literal expression.

Note: You will usually see this fragment being used in a matcher like #[$meta:meta]
or #![$meta:meta] to actually capture an attribute.

macro_rules! metas {
($($Smeta:meta)*) => ();
}

metas! {
ASimplePath
super::man
path = "home"
foo(bar)

Doc-Comment Fact: Doc-Comments like /// ... and //! ... are actually syntax
sugar for attributes! They desugar to #[doc="..."] and #![doc="..."] respectively,
meaning you can match on them like with attributes!

pat

The pat fragment matches any kind of pattern, including or-patterns starting with the 2021
edition.

macro_rules! patterns {
($($pat:pat)*) => ();

}

patterns! {
"literal”
0..5

ref mut PatternsAreN-dice
o | 1] 2] 3


https://doc.rust-lang.org/reference/attributes.html
https://doc.rust-lang.org/reference/patterns.html

pat_param

In the 2021 edition, the behavior for the pat fragment type has been changed to allow or-
patterns to be parsed. This changes the follow list of the fragment, preventing such
fragment from being followed by a | token. To avoid this problem or to get the old
fragment behavior back one can use the pat_param fragment which allows | to follow it, as
it disallows top level or-patterns.

macro_rules! patterns {
($( $( $pat:pat_param )|+ )*) => ();

}

patterns! {
"literal”
0..5
ref mut PatternsAreNdice
e ] 1] 2] 3

}

path

The path fragment matches a so called TypePath style path. This includes the function style
trait forms, Fn() -> ().

macro_rules! paths {
($($path:path)*) => ();

}

paths! {
ASimplePath
t:A::B::C::D
G::<eneri>::C
FnMut(u32) -> ()

}

stmt

The statement fragment solely matches a statement without its trailing semicolon, unless it
is an item statement that requires one (such as a Unit-Struct).

Let's use a simple example to show exactly what is meant with this. We use a macro that
merely emits what it captures:


https://doc.rust-lang.org/reference/paths.html#paths-in-types
https://doc.rust-lang.org/reference/statements.html

macro_rules! statements {
($(Sstmt:stmt)*) => (S$S($stmt)x);
}

fn main() {
statements! {

struct Foo;

fn foo() {}

let zig 3

let zig = 3;

3

33

if true {} else {}
{}

Expanding this, via the playground for example, gives us roughly the following:

/* snip */

fn main() {
struct Foo;
fn foo() { }
let zig = 3;
let zig = 33
5
3;
3;
5
if true { } else { }
{1}

From this we can tell a few things.

The first you should be able to see immediately is that while the stmt fragment doesn't
capture trailing semicolons, it still emits them when required, even if the statement is
already followed by one. The simple reason for that is that semicolons on their own are
already valid statements which the fragment captures eagerly. So our macro isn't capturing
8 times, but 10! This can be important when doing multiples repetitions and expanding
these in one repetition expansion, as the repetition numbers have to match in those cases.

Another thing you should be able to notice here is that the trailing semicolon of the struct
Foo; item statement is being matched, otherwise we would've seen an extra one like in the
other cases. This makes sense as we already said, that for item statements that require one,
the trailing semicolon will be matched with.

A last observation is that expressions get emitted back with a trailing semicolon, unless the
expression solely consists of only a block expression or control flow expression.


https://play.rust-lang.org/

The fine details of what was just mentioned here can be looked up in the reference.

Fortunately, these fine details here are usually not of importance whatsoever, with the small
exception that was mentioned earlier in regards to repetitions which by itself shouldn't be a
common problem to run into.

T See the debugging chapter for tips on how to do this.

tt

The tt fragment matches a TokenTree. If you need a refresher on what exactly a TokenTree
was you may want to revisit the TokenTree chapter of this book. The tt fragment is one of

the most powerful fragments, as it can match nearly anything while still allowing you to
inspect the contents of it at a later state in the macro.

This allows one to make use of very powerful patterns like the tt-muncher or the push-
down-accumulator.

ty

The ty fragment matches any kind of type expression.

macro_rules! types {
($(Stype:ty)*) => ()
}

types! {
foo::bar
bool
[u8]
impl IntoIterator<Item = u32>

vis

The vis fragment matches a possibly empty Visibility qualifier.
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macro_rules! visibilities {

// v~~Note this comma, since we cannot repeat a “vis® fragment on
its own

($(Svis:vis,)x) => ();
}

visibilities! {
, // no vis is fine, due to the 1implicit “?°
pub,
pub(crate),
pub(in super),
pub(in some_path),

While able to match empty sequences of tokens, the fragment specifier still acts quite
different from optional repetitions which is described in the following:

If it is being matched against no left over tokens the entire macro matching fails.

macro_rules! non_optional_vis {
($vis:vis) => ();
}
non_optional_vis!();
/] MANMAAAANAAAAANAN erpror: missing tokens in macro arguments

$vis:vis S$ident:ident matches fine.

macro_rules! vis_dident {
($vis:vis $ident:ident) => ();
}

vis_ident! (pub foo); // this works fine
In contrast, $(pub)? $ident:ident is ambiguous, as pub denotes a valid identifier.

macro_rules! pub_ident {
($(pub)? Sident:ident) => ();
}
pub_dident! (pub foo);
// MMM error: local ambiguity when calling macro “pub_ident’: multiple
parsing options: built-in NTs ident ('dident') or 1 other option.

Being a fragment that matches the empty token sequence also gives it a very interesting
quirk in combination with tt fragments and recursive expansions.

When matching the empty token sequence, the metavariable will still count as a capture and
sinceitisnota tt, ident or lifetime fragment it will become opaque to further
expansions. This means if this capture is passed onto another macro invocation that
capturesitasa tt you effectively end up with token tree that contains nothing!


https://veykril.github.io/tlborm/decl-macros/macros-methodical.html#repetitions

macro_rules! it_1is_opaque {
() =>{"O" }s
(($tt:tt)) => { concat!("$tt is ", stringify!($tt)) };
($vis:vis ,) => { it_is_opaque!( ($vis) ); 1}
}
fn main() {
// this prints "$tt is ", as the recursive calls hits the second branch
with
// an empty tt, opposed to matching with the first branch!
println! ("{}", it_is_opaque!(,));



Metavariables and Expansion Redux

Once the parser begins consuming tokens for a metavariable, it cannot stop or backtrack.
This means that the second rule of the following macro cannot ever match, no matter what
input is provided:

macro_rules! dead_rule {
(Setexpr) => { ... };
($i:ident +) => { ... };

Consider what happens if this macro is invoked as dead_rule! (x+) . The interpreter will
start at the first rule, and attempt to parse the input as an expression. The first token x is
valid as an expression. The second token is also valid in an expression, forming a binary
addition node.

At this point, given that there is no right-hand side of the addition, you might expect the
parser to give up and try the next rule. Instead, the parser will panic and abort the entire
compilation, citing a syntax error.

As such, itis important in general that you write macro rules from most-specific to least-
specific.

To defend against future syntax changes altering the interpretation of macro input,
macro_rules! restricts what can follow various metavariables. The complete list, showing
what may follow what fragment specifier, as of Rust 1.46 is as follows:

e stmt and expr: =>, ,,0r ;
1

® pat: =>, ,, =, 1if, in
e pat_param: =>, ,, =, |, if, in
e path and ty:=>, ,, =, 1,3, :,>,>, [, {, as, where, or a macro variable of

the block fragment specifier.
e vis: ,,anidentifier other than a non-raw priv, any token that can begin a type or a
metavariable with an ident, ty, or path fragment specifier.
All other fragment specifiers have no restrictions.

' Edition Differences: Before the 2021 edition, pat may also be followed by | .

Repetitions also adhere to these restrictions, meaning if a repetition can repeat multiple
times( * or +), then the contents must be able to follow themselves. If a repetition can
repeat zero times ( ? or *)then what comes after the repetition must be able to follow
what comes before.


https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#stmt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#expr
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#pat_param
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#block
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#vis
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ty
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#path

The parser also does not perform any kind of lookahead. That means if the compiler cannot
unambiguously determine how to parse the macro invocation one token at a time, it will
abort with an ambiguity error. A simple example that triggers this:

macro_rules! ambiguity {
($($i:ident)x $i2:ident) => { };
}

// error:

// local ambiguity: multiple parsing options: built-in NTs dident ('i') or
ident ('i2').

ambiguity! (an_identifier);

The parser does not look ahead past the identifier to see if the following token isa ) , which
would allow it to parse properly.

One aspect of substitution that often surprises people is that substitution is not token-
based, despite very much looking like it.

Consider the following:

macro_rules! capture_then_match_tokens {
($e:expr) => {match_tokens! (S$e)};
}

macro_rules! match_tokens {
($a:tt + $b:tt) => {"got an addition"};
(($i:ident)) => {"got an -didentifier"};
($(Sother:tt)*x) => {"got something else"};
}

fn main() {

printin! ("{I\n{}\n{}\n",
match_tokens! ((caravan)),
match_tokens! (3 + 6),
match_tokens! (5));

println! ("{}\n{}\n{}",
capture_then_match_tokens! ((caravan)),
capture_then_match_tokens! (3 + 6),
capture_then_match_tokens!(5));

The output is:

got an didentifier
got an addition
got something else

got something else
got something else
got something else



By parsing the input into an AST node, the substituted result becomes un-destructible; i.e.
you cannot examine the contents or match against it ever again.

Here is another example which can be particularly confusing:

macro_rules! capture_then_what_is {
(#[$m:meta]) => {what_is!(#[$m])};
}

macro_rules! what_is {

(#[no_mangle]) => {"no_mangle attribute"};

(#[inline]) => {™inline attribute"};

($(Stts:tt)x) => {concat!("something else (", stringify! ($(Stts)x), ")")};
}

fn main() {
println!(
"{I\n{I\n{}\n{}",
what_is! (#[no_mangle]),
what_is! (#[inline]),
capture_then_what_is! (#[no_mangle]),
capture_then_what_is! (#[inline]),

)3

The output is:

no_mangle attribute

inline attribute

something else (#[no_mangle])
something else (#[inline])

The only way to avoid this is to capture using the tt, ident or lifetime kinds. Once you
capture with anything else, the only thing you can do with the result from then on is
substitute it directly into the output.


https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#ident
https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#lifetime

Metavariable Expressions

RFC: rfcs#1584
Tracking Issue: rust#83527
Feature: #![feature(macro_metavar_expr)]

Note: The example code snippets are very bare bones, trying to show off how they
work. If you think you got small snippets with proper isolated usage of these
expression please submit them!

As mentioned in the methodical introduction, Rust has special expressions that can be
used by macro transcribers to obtain information about metavariables that are otherwise
difficult or even impossible to get. This chapter will introduce them more in-depth together
with usage examples.

* 33

e S${count($ident, depth)}
e ${index(depth)}

e ${length(depth)}

o S${ignore(S$ident)}

Dollar Dollar ($$)

The $$ expression expands to a single $, making it effectively an escaped $ . This enables
the ability in writing macros emitting new macros as the former macro won't transcribe
metavariables, repetitions and metavariable expressions that have an escaped $.

We can see the problem without using $$ in the following snippet:

macro_rules! foo {
0 =>{
macro_rules! bar {
( $( $sany:tt )x ) => { $( Sany )* };
/] ANMANAAANANAN error: attempted to repeat an expression containing
no syntax variables matched as repeating at this depth
}
}s

foo! ()3


https://github.com/rust-lang/rfcs/blob/master/text/3086-macro-metavar-expr.md
https://github.com/rust-lang/rust/issues/83527
https://veykril.github.io/tlborm/decl-macros/macros-methodical.html
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#dollar-dollar-
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#countident-depth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#indexdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#lengthdepth
https://veykril.github.io/tlborm/decl-macros/minutiae/metavar-expr.html#ignoreident

The problem is obvious, the transcriber of foo sees a repetition and tries to repeat it when
transcribing, but there is no $any metavariable in its scope causing it to fail. With $$ we

can get around this as the transcriber of foo will no longer try to do the repetition.’

#![feature(macro_metavar_expr)]

macro_rules! foo {
0 =>{
macro_rules! bar {
( $$( $3any:tt )*x ) => { $$( $Sany )*x };
}
}s
}

foo! ()3
bar!();

T Before $3% occurs, users must resort to a tricky and not so well-known hack to declare nested macros
with repetitions via using $tt like this.

count($ident, depth)

The count metavariable expression expands to the repetition count of the metavariable
$ident up to the given repetition depth.

e The $ident argument must be a declared metavariable in the scope of the rule.

e The depth argument must be an integer literal of value less or equal to the maximum
repetition depth that the $ident metavariable appears in.

e The expression expands to an unsuffixed integer literal token.

The count($ident) expression defaults depth to the maximum valid depth, making it
count the total repetitions for the given metavariable.


https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=9ce18fc79ce17c77d20e74f3c46ee13c

#![feature(macro_metavar_expr) ]

macro_rules! foo {
( $( Souter:ident ( $( $inner:ident ),*x ) 5 )*x ) => {
println! ("count(outer, 0): $outer repeats {} times", ${count(Souter)});
println! ("count(inner, 0): The $inner repetition repeats {} times 1in
the outer repetition", ${count($inner, 0)});
println! ("count(inner, 1): $inner repeats {} times in the inner
repetitions", ${count($inner, 1)});

}s
}
fn main() {
foo! {
outer () ;
outer ( 1inner , inner ) ;
outer () ;
outer ( 1inner ) ;
}s
}
index(depth)

The -index(depth) metavariable expression expands to the current iteration index of the
repetition at the given depth.

e The depth argument targets the repetition at depth counting outwards from the

inner-most repetition where the expression is invoked.
e The expression expands to an unsuffixed integer literal token.

The 4index() expression defaults depth to 6, making it a shorthand for -index(o) .



#![feature(macro_metavar_expr) ]

macro_rules! attach_-diteration_counts {
( $C ( $( $inner:ident ),*x ) 53 )*x ) => {
( $(
$((

stringify! ($inner),

${index (1)}, // this targets the outer repetition

${index()} // and this, being an alias for “1index(0)" targets
the inner repetition

)s) %
)* )
}s3
}
fn main() {
let v = attach_iteration_counts! {
( hello ) ;
( indices , of ) ;
ON
( these, repetitions ) ;
}s
println! ("{v:?2}");
}
length(depth)

The 1length(depth) metavariable expression expands to the iteration count of the
repetition at the given depth.

e The depth argument targets the repetition at depth counting outwards from the
inner-most repetition where the expression is invoked.
e The expression expands to an unsuffixed integer literal token.

The 1length() expression defaults depth to e, making it a shorthand for length(e) .



#![feature(macro_metavar_expr) ]

macro_rules! lets_count {
( $( Souter:ident ( $( $inner:ident ),*x ) 5 )*x ) => {

$(
$(
println! (
"'"{}'" d9n dnner -dteration {}/{} with '"{}' 1in outer -iteration
/74",
stringify! ($inner), ${index()}, ${length()},
stringify! (Souter), ${index(1)}, ${length(1)},
)5
) %
) %
}s3
}
fn main() {
lets_count! (
many (small , things) ;
none () ;
exactly ( one ) ;
)
}
ignore($ident)

The -ignore($ident) metavariable expression expands to nothing, making it possible to
expand something as often as a metavariable repeats without expanding the metavariable.

e The $ident argument must be a declared metavariable in the scope of the rule.



#![feature(macro_metavar_expr)]

macro_rules! repetition_tuples {

( $C ( $( $inner:ident ),x ) 5 )* ) => {
($(

$(
${index()},
${index (1)}

${ignore($inner)} // without this metavariable expression,
compilation would fail

) s

) %
) %)
}s3
}
fn main() {
let tuple = repetition_tuples!(
( one, two ) ;
O 3
( one ) ;
( one, two, three ) ;
)5

println! ("{tuple:?}");



Hygiene

macro_rules! macros in Rust are partially hygienic, also called mixed hygiene. Specifically,
they are hygienic when it comes to /ocal variables, labels and $crate, but nothing else.

Hygiene works by attaching an invisible "syntax context" value to all identifiers. When two
identifiers are compared, both the identifiers' textual names and syntax contexts must be
identical for the two to be considered equal.

To illustrate this, consider the following code:

macro_rules! using a {
($e:expr) => {
{
let a = 42;

$e

}
let four = using al(a / 10);

We will use the background colour to denote the syntax context. Now, let's expand the
macro invocation:

let four = {
let a = 42;
a / 10

}s

First, recall that macro_rules! invocations effectively disappear during expansion.

Second, if you attempt to compile this code, the compiler will respond with something along
the following lines:

error[E0425]: cannot find value “a’ 1in this scope
--> src/main.rs:13:21

I
13 | let four = using_a!(a / 10);
| A not found in this scope

Note that the background colour (i.e. syntax context) for the expanded macro changes as
part of expansion. Each macro_rules! macro expansion is given a new, unique syntax
context for its contents. As a result, there are two different as in the expanded code: one in
the first syntax context, the second in the other. In other words, a is not the same identifier
as a, however similar they may appear.

That said, tokens that were substituted into the expanded output retain their original syntax
context (by virtue of having been provided to the macro as opposed to being part of the



macro itself). Thus, the solution is to modify the macro as follows:

macro_rules! using a {
($a:ident, $e:expr) => {

{
let $a = 42;

$e

}
let four = using al!(a, a / 10);

Which, upon expansion becomes:

let four = {
let a = 42;
a/ 10

¥

The compiler will accept this code because there is only one a being used.

$crate

Hygiene is also the reason that we need the $crate metavariable when our macro needs
access to other items in the defining crate. What this special metavariable does is that it
expands to an absolute path to the defining crate.

//// Definitions in the “helper_macro’ crate.
#[macro_export]
macro_rules! helped {
// () => { helper!() } // This might lead to an error due to 'helper' not
being in scope.
() => { Scrate::helper!() }
}

#[macro_export]
macro_rules! helper {
O=>4{0 12

}

//// Usage in another crate.
// Note that “helper_macro::helper’' is not +imported!
use helper_macro::helped;

fn unit() {

// but it still works due to "S$Scrate’ properly expanding to the crate path
“helper_macro’

helped! ();
}



Note that, because $crate refersto the current crate, it must be used with a fully qualified
module path when referring to non-macro items:

pub mod 1inner {
#[macro_export]
macro_rules! call_foo {
() => { S$crate::inner::foo() 1};

}

pub fn foo() {}



Non-ldentifier Identifiers

There are two tokens which you are likely to run into eventually that ook like identifiers, but
aren't. Except when they are.

Firstis self. This is very definitely a keyword. However, it also happens to fit the definition
of an identifier. In regular Rust code, there's no way for self to be interpreted as an
identifier, but it can happen with macro_rules! macros:

macro_rules! what_is {

(self) => {"the keyword “self "};

($i:ident) => {concat! ("the identifier ", stringify!($i), "' ")};
}

macro_rules! call_with_ident {
($c:ident($i:ident)) => {Sc!($1)};

}
fn main() {

println! ("{}", what_is!(self));

println! ("{}", call_with_ident! (what_is(self)));
}

The above outputs:

the keyword “self’
the keyword “self’

But that makes no sense; call_with_ident! required an identifier, matched one, and
substituted it! So self is both a keyword and not a keyword at the same time. You might
wonder how this is in any way important. Take this example:

macro_rules! make_mutable {
($i:ident) => {let mut $i = $i;};
}

struct Dummy(i32);

impl Dummy {
fn double(self) -> Dummy {
make_mutable! (self);
self.0 *= 23
self

This fails to compile with:



error: ‘'mut’ must be followed by a named binding
--> src/main.rs:2:24

|
2 | ($i:ident) => {let mut $i = $i;};
| ANAAAN help: remove the “mut’ prefix: “self’

| make_mutable! (self);
| e in this macro invocation
|

note: “mut’ may be followed by ‘variable® and “variable @ pattern’

So the macro will happily match self as an identifier, allowing you to use it in cases where
you can't actually use it. But, fine; it somehow remembers that self is a keyword even
when it's an identifier, so you should be able to do this, right?

macro_rules! make_self_mutable {
($i:ident) => {let mut $i = self;};
}

struct Dummy(i32);

impl Dummy {
fn double(self) -> Dummy {
make_self_mutable! (mut_self);
mut_self.0 *x= 2;
mut_self

This fails with:

error[E0424]: expected value, found module ‘self’
--> src/main.rs:2:33

I
2 | ($i:ident) => {let mut $i = self;};

| AAAN “gelf’ value is a keyword only
available in methods with a ‘self’ parameter

8

| / fn double(self) -> Dummy {
9 | | make_self_mutable! (mut_self);
[l e in this macro invocation
10 | | mut_self.0 x= 2;
11 | | mut_self
12 ] 3}
[ — - this function has a “self’ parameter, but a macro invocation can
only access +identifiers it receives from parameters
I

Now the compiler thinks we refer to our module with self, but that doesn't make sense.
We already have a self right there, in the function signature which is definitely not a
module. It's almost like it's complaining that the self it's trying to use isn't the same self ...
as though the self keyword has hygiene, like an... identifier.



macro_rules! double_method {
($body:expr) => {
fn double(mut self) -> Dummy {
$body
}
}s
}

struct Dummy(i32);

impl Dummy {
double_method! {{
self.0 *= 23
self
1}

Same error. What about...

macro_rules! double_method {
($self_:ident, S$body:expr) => {
fn double(mut $self_) -> Dummy {
$body
}
}5
}

struct Dummy(i32);

impl Dummy {
double_method! {self, {
self.0 *= 23
self
+}

At last, this works. So self is both a keyword and an identifier when it feels like it. Surely this
works for other, similar constructs, right?

macro_rules! double_method {
($self_:ident, S$body:expr) => {
fn double($self_) -> Dummy {
$body
}
}s
}

struct Dummy(i32);
impl Dummy {

double_method! {_, 0}
}



error: no rules expected the token '_
-=> src/main.rs:12:21

1 | macro_rules! double_method {
| - when calling this macro

12 | double_method! {_, 0}
| A no rules expected this token in macro call

No, of course not. _ is a keyword that is valid in patterns and expressions, but somehow
isn't an identifier like the keyword self is, despite matching the definition of an identifier
just the same.

You might think you can get around this by using $self_:pat instead; that way, _ will
match! Except, no, because self isn't a pattern. Joy.

The only work around for this (in cases where you want to accept some combination of
these tokens) is to use a tt matcher instead.


https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt

Debugging

Note: This is a list of debugging tools specifically tailored towards declarative macros,
additional means of debugging these can be found in the debugging chapter of syntax
extensions.

One of the most useful is trace_macros! , which is a directive to the compiler instructing it
to dump every macro_rules! macro invocation prior to expansion. For example, given the
following:

#![feature(trace_macros) ]

macro_rules! each_tt {

0 => {};

(S_tt:tt S(S$rest:tt)*) => {each_tt! (S(Srest)*);};
}

each_tt! (foo bar baz quux);
trace_macros! (true);

each_tt! (spim wak plee whum);
trace_macros! (false);
each_tt! (trom gqlip winp xod);

The output is:

note: trace_macro
-=> src/main.rs:11:1

| each_tt! (spim wak plee whum);
| ANANANANAANNANANAANNANANAANNANANANNANANNANANANANNANN

11

note: expanding “each_tt! { spim wak plee whum }°
= note: to ‘each_tt ! (wak plee whum) ;°
= note: expanding “each_tt! { wak plee whum }°
= note: to ‘each_tt ! (plee whum) ;°
= note: expanding ‘each_tt! { plee whum }°
= note: to ‘each_tt ! (whum) ;°
= note: expanding “each_tt! { whum }°
= note: to ‘each_tt ! () ;°
= note: expanding ‘each_tt! { 1}°
= note: to °°

This is particularly invaluable when debugging deeply recursive macro_rules! macros. You
can also enable this from the command-line by adding -z trace-macros to the compiler
command line.

Secondly, there is log_syntax! which causes the compiler to output all tokens passed to it.
For example, this makes the compiler sing a song:


https://veykril.github.io/tlborm/syntax-extensions/debugging.html
https://doc.rust-lang.org/std/macro.trace_macros.html
https://doc.rust-lang.org/std/macro.log_syntax.html

#![feature(log_syntax)]

macro_rules! sing {
0 => {};
(stt:tt $(Srest:tt)*) => {log_syntax!($tt); sing!($(Srest)x*);};

}
sing! {
AN @< . @ «*
I\XOSI l{l T _ # 1 1
-@ 'S &/ _ %
PO\t e | =>
; '\X08' l\ll + |$| ? I\X7-Fl
R 2L LI P I ) '\XO?'
}

This can be used to do slightly more targeted debugging than trace_macros! .

Another amazing tool is lukaslueg's macro_railroad, a tool that allows you visualize and

generate syntax diagrams for Rust's macro_rules! macros. It visualizes the accepted
macro's grammar as an automata.


https://doc.rust-lang.org/std/macro.trace_macros.html
https://github.com/lukaslueg
https://github.com/lukaslueg/macro_railroad

Scoping

The way in which mbe macros are scoped can be somewhat unintuitive. They use two forms
of scopes: textual scope, and path-based scope.

When such a macro is invoked by an unqualified identifier(an identifier that isn't part of a
multi-segment path), it is first looked up in textual scoping and then in path-based scoping
should the first lookup not yield any results. If it is invoked by a qualified identifier it will skip
the textual scoping lookup and instead only do a look up in the path-based scoping.

Textual Scope

Firstly, unlike everything else in the language, function-like macros will remain visible in sub-
modules.

macro_rules! X { () => {}; }
mod a {
X'(); // defined
}
mod b {
X' (); // defined
}
mod c {
X' (); // defined
}

Note: In these examples, remember that all of them have the same behavior when the
module contents are in separate files.

Secondly, also unlike everything else in the language, macro_rules! macros are only
accessible after their definition. Also note that this example demonstrates how
macro_rules! macros do not "leak" out of their defining scope:

mod a {
// X'(); // undefined

}

mod b {
// X'(); // undefined
macro_rules! X { () => {}; }
X' (); // defined

}

mod c {

// X'(); // undefined
}



To be clear, this lexical order dependency applies even if you move the macro to an outer
scope:

mod a {
// X! (); // undefined
}
macro_rules! X { () => {}; }
mod b {
X' (); // defined
}
mod c {
X'(); // defined
}

However, this dependency does not apply to macros themselves:

mod a {

// X'(); // undefined
}
macro_rules! X { () => { Y!(); }; }
mod b {

// X!(); // defined, but Y! is undefined
}
macro_rules! Y { () => {}; }
mod c {

X! (); // defined, and so 1is Y!
}

Defining macro_rules! macros multiple times is allowed and the most recent declaration
will simply shadow previous ones unless it has gone out of scope.

macro_rules! X { (1) => {}; }

X1(1);

macro_rules! X { (2) => {}; }

// X'(1); // Error: no rule matches °1°
X1(2);

mod a {
macro_rules! X { (3) => {}; }
// X!(2); // Error: no rule matches "2°

X1(3);
}
// X'(3); // Error: no rule matches °3°
X1(2);

macro_rules! macros can be exported from a module using the #[macro_use] attribute.
Using this on a module is similar to saying that you do not want to have the module's
macro's scope end with the module.



mod a {
// X'(); // undefined

}

#[macro_use]

mod b {
macro_rules! X { () => {}; }
X! (); // defined

}

mod c {
X' (); // defined

}

Note that this can interact in somewhat bizarre ways due to the fact that identifiers in a
macro_rules! macro (including other macros) are only resolved upon expansion:

mod a {
// X'(); // undefined
}
#[macro_use]
mod b {
macro_rules! X { () => { Y!(); }; }
// X1 (); // defined, but Y! is undefined
}
macro_rules! Y { () => {}; }
mod c {
X' (); // defined, and so is Y!
}

Another complication is that #[macro_use] applied to an extern crate does not behave

this way: such declarations are effectively hoisted to the top of the module. Thus, assuming
X! is defined in an external crate called macs, the following holds:

mod a {

// X!(); // defined, but Y! is undefined
}
macro_rules! Y { () => {}; }
mod b {

X' (); // defined, and so is Y!
}
#[macro_use] extern crate macs;
mod c {

X' (); // defined, and so is Y!
}

Finally, note that these scoping behaviors apply to functions as well, with the exception of #
[macro_use] (which isn't applicable):



macro_rules! X {

O =>{Y!O };
}
fn a() {
macro_rules! Y { () => {"Hi!"} }
assert_eq! (X! (), "Hi!");
{
assert_eq! (X! (), "Hil™");
macro_rules! Y { () => {"Bye!"} }
assert_eq! (X! (), "Bye!™);
}
assert_eq! (X! (), "Hil™);
}
fn b() {
macro_rules! Y { () => {"One more"} }
assert_eq! (X! (), "One more");
}

These scoping rules are why a common piece of advice is to place all macro_rules! macros
which should be accessible "crate wide" at the very top of your root module, before any
other modules. This ensures they are available consistently. This also applies to mod
definitions for files, as in:

#[macro_use]
mod some_mod_that_defines_macros;
mod some_mod_that_uses_those_macros;

The order here is important, swap the declaration order and it won't compile.

Path-Based Scope

By default, a macro_rules! macro has no path-based scope. However, if it has the #
[macro_export] attribute, then itis declared in the crate root scope and can be referred to
similar to how you refer to any other item. The Import and Export chapter goes more in-
depth into said attribute.


https://veykril.github.io/tlborm/decl-macros/minutiae/import-export.html

Import and Export

Importing macro_rules! macros differs between the two Rust Editions, 2015 and 2018. It is
recommended to read both parts nevertheless, as the 2018 Edition can still use the
constructs that are explained in the 2015 Edition.

Edition 2015

In Edition 2015 you have to use the #[macro_use] attribute that has already been

introduced in the scoping chapter. This can be applied to either modules or external crates.
For example:

#[macro_use]
mod macros {

macro_rules! X { () => { Y!(); } }
macro_rules! Y { () => {} }

}

XE()s

macro_rules! macros can be exported from the current crate using #[macro_export] .
Note that this ignores all visibility.

Given the following definition for a library package macs :

mod macros {
#[macro_export] macro_rules! X {
#[macro_export] macro_rules! Y {

>{YiQ)s 1
> {} }

~

)
)
}

// X! and Y! are *notx defined here, but *arex exported,
// despite 'macros’ being private.

The following code will work as expected:

X' ()s; // X is defined
#[macro_use] extern crate macs;

Xt()s

This works, as said in the scoping chapter, because #[macro_use] works slightly different on
extern crates, as it basically hoists the exported macros out of the crate to the top of the
module.
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Note: you can only #[macro_use] an external crate from the root module.

Finally, when importing macro_rules! macros from an external crate, you can control which
macros you import. You can use this to limit namespace pollution, or to override specific
macros, like so:

// Import *onlyx the “X!' macro.
#[macro_use(X)] extern crate macs;

// X'(); // X is defined, but Y! is undefined
macro_rules! Y { () => {} }
X!'(); // X is defined, and so 1is V!

fn main() {}

When exporting macro_rules! macros, it is often useful to refer to non-macro symbols in
the defining crate. Because crates can be renamed, there is a special substitution variable
available: scrate . This will always expand to an absolute path prefix to the containing crate
(e.g. :: macs).

Note that unless your compiler version is >= 1.30, this does not work for macro_rules!
macros, because macro_rules! macros do not interact with regular name resolution in any
way. Otherwise, you cannot use something like $crate::v! to refer to a particular macro
within your crate. The implication, combined with selective imports via #[macro_use] is that
there is currently no way to guarantee any given macro will be available when imported by
another crate.

It is recommended that you always use absolute paths to non-macro names, to avoid
conflicts, including names in the standard library.

Edition 2018

The 2018 Edition made our lives a lot easier when it comes to macro_rules! macros. Why
you ask? Quite simply because it managed to make them feel more like proper items than
some special thing in the language. What this means is that we can properly import and use
them in a namespaced fashion!

So instead of using #[macro_use] to import every exported macro from a crate into the
global namespace we can now do the following:
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use some_crate::some_macro;

fn main() {
some_macro! ("hello");
// as well as
some_crate: :some_other_macro! ("macro world");

Unfortunately, this only applies for external crates, if you use macro_rules! macros that
you have defined in your own crate you are still required to go with #[macro_use] onthe
defining modules. So scoping applies there the same way as before as well.

The $crate prefix works in this version for everything, macros and items alike since
this Edition came out with Rust 1.31.




Patterns

Parsing and expansion patterns.



Callbacks

Due to the order that macros are expanded in, it is (as of Rust 1.2) impossible to pass
information to a macro from the expansion of another macro:

macro_rules! recognize_tree {

(larch) => { println! ("#1, the Larch.") };

(redwood) => { println!("#2, the Mighty Redwood.") };

(fir) => { println! ("#3, the Fir.") };

(chestnut) => { println! ("#4, the Horse Chestnut.") };

(pine) => { println! ("#5, the Scots Pine.") };

($(Sother:tt)*) => { println! ("I don't know; some kind of birch maybe?") };
}

macro_rules! expand_to_larch {
() => { larch };

}
fn main() {
recognize_tree! (expand_to_larch!());
// first expands to: vrecognize_tree! { expand_to_larch ! ( ) }
// and then: println! { "I don't know; some kind of birch maybe?"
}
}

This can make modularizing macros very difficult.

An alternative is to use recursion and pass a callback:

/1

macro_rules! call_with_larch {
($callback:ident) => { $callback! (larch) };

}
fn main() {
call_with_larch! (recognize_tree);
// first expands to: call_with_larch! { recognize_tree }
// then: recognize_tree! { larch }
// and finally: println! { "#1, the Larch." }
}

Using a tt repetition, one can also forward arbitrary arguments to a callback.



macro_rules! callback {
($callback:ident( $(Sargs:tt)x )) => {
$callback! ( $(Sargs)* )

13
}
fn main() {

callback! (callback(println("Yes, this *was* unnecessary.")));
}

You can, of course, insert additional tokens in the arguments as needed.



Incremental TT Munchers

macro_rules! mixed_rules {

0 => {};
(trace $name:ident; $(Stail:tt)x) => {
{
println! (concat! (stringify!(Sname), " = {:2?}"), Sname);
mixed_rules! ($($tail)x*);
}
}s
(trace $name:ident = $init:expr; $($tail:tt)x) => {
{
let Sname = $init;
println! (concat! (stringify!(Sname), " = {:2?}"), Sname);
mixed_rules! ($($tail)x*);
}
}s

This pattern is perhaps the most powerful macro parsing technique available, allowing one to
parse grammars of significant complexity. However, it can increase compile times if used
excessively, so should be used with care.

A TT muncher is a recursive macro_rules! macro that works by incrementally processing its
input one step at a time. At each step, it matches and removes (munches) some sequence of
tokens from the start of its input, generates some intermediate output, then recurses on the
input tail.

The reason for "TT" in the name specifically is that the unprocessed part of the input is
always captured as $($tail:tt)*.Thisis done asa tt repetition is the only way to
losslessly capture part of a macro's input.

The only hard restrictions on TT munchers are those imposed on the macro_rules! macro
system as a whole:

e You can only match against literals and grammar constructs which can be captured by
macro_rules! .

e You cannot match unbalanced groups.

It is important, however, to keep the macro recursion limit in mind. macro_rules! does not
have any form of tail recursion elimination or optimization. It is recommended that, when
writing a TT muncher, you make reasonable efforts to keep recursion as limited as possible.
This can be done by adding additional rules to account for variation in the input (as opposed
to recursion into an intermediate layer), or by making compromises on the input syntax to
make using standard repetitions more tractable.


https://veykril.github.io/tlborm/decl-macros/minutiae/fragment-specifiers.html#tt

Performance

TT munchers are inherently quadratic. Consider a TT muncher rule that consumes one
token tree and then recursively calls itself on the remaining input. If it is passed 100 token
trees:

e The initial invocation will match against all 100 token trees.
e The first recursive invocation will match against 99 token trees.
e The next recursive invocation will match against 98 token trees.

And so on, down to 1. This is a classic quadratic pattern, and long inputs can cause macro
expansion to blow out compile times.

Try to avoid using TT munchers too much, especially with long inputs. The default value of
the recursion_limit attribute is a good sanity check; if you have to exceed it, you might be
heading for trouble.

If you have the choice between writing a TT muncher that can be called once to handle
multiple things, or a simpler macro that can be called multiple times to handle a single thing,
prefer the latter. For example, you could change a macro that is called like this:

fl {
fn f_u8(x: u32) -> u8;
fn f_ule(x: u32) -> ul6;
fn f_u32(x: u32) -> u32;
fn f_u64(x: u64) -> u64;
fn f_ul28(x: ul28) -> ul28;

To one that is called like this:

fl { fn f_u8(x: u32) -> u8; }

f! { fn f_ule(x: u32) -> ule6; }

fl { fn f_u32(x: u32) -> u32; }

fl { fn f_u64(x: u64) -> u64d; }

fl { fn f_ul28(x: ul28) -> ul28; }

The longer the input, the more likely this will improve compile times.

Also, if a TT muncher macro has many rules, put the most frequently matched rules as early
as possible. This avoids unnecessary matching failures. (In fact, this is good advice for any
kind of declarative macro, not just TT munchers.)

Finally, if you can write a macro using normal repetition via x or +, that should be
preferred to a TT muncher. This is most likely if each invocation of the TT muncher would
only process one token at a time. In more complicated cases, there is an advanced
technique used within the quote crate that can avoid the quadratic behaviour, at the cost of
some conceptual complexity. See this comment for details.
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Internal Rules

#[macro_export]
macro_rules! foo {
(@as_expr $e:expr) => {S$Se};

($($tts:tt)*) => {
foo! (@as_expr $($tts)x)
}s

Internal rules can be used to unify multiple macro_rules! macros into one, or to make it
easier to read and write TT Munchers by explicitly naming what rule you wish to call in a
macro.

So why is it useful to unify multiple macros-by-example into one? The main reasoning for
this is how they are handled in the 2015 Edition of Rust due to macro_rules! macros not
being namespaced in said edition. This gives one the troubles of having to re-export all the
internal macro_rules! macros as well as polluting the global macro namespace or even
worse, macro name collisions with other crates. In short, it's quite a hassle. This fortunately
isn't really a problem anymore nowadays with a rustc version >= 1.30, for more information
consult the Import and Export chapter.

Nevertheless, let's talk about how we can unify multiple macro_rules! macros into one with
this technique and what exactly this technique even is.

We have two macro_rules! macros, the common as_expr! macro and a foo macro that
makes use of the first one:

#[macro_export]
macro_rules! as_expr { ($e:expr) => {Se} }

#[macro_export]
macro_rules! foo {
($(stts:tt)*) => {
as_expr! ($(Stts)x)
}s

This is definitely not the nicest solution we could have for this macro, as it pollutes the
global macro namespace as mentioned earlier. In this specific case as_expr is also a very
simple macro that we only used once, so let's "embed" this macro in our foo macro with
internal rules! To do so, we simply prepend a new matcher for our macro, which consists of
the matcher used in the as_expr macro, but with a small addition. We prepend a tokentree
that makes it match only when specifically asked to. In this case we can for example use
@as_expr , SO our matcher becomes (@as_expr $e:expr) => {$e}; . With this we get the
macro that was defined at the very top of this page:
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#[macro_export]
macro_rules! foo {
(@Qas_expr Se:expr) => {$e};

($($tts:tt)*x) => {
foo! (@as_expr $($tts)x)
13

You see how we embedded the as_expr macro in the foo one? All that changed is that
instead of invoking the as_expr macro, we now invoke foo recursively but with a special
token tree prepended to the arguments, foo! (@as_expr $($tts)x*) . If you look closely you
might even see that this pattern can be combined quite nicely with TT Munchers!

The reason for using @ was that, as of Rust 1.2, the @ token is not used in prefix position; as
such, it cannot conflict with anything. This reasoning became obsolete later on when in Rust
1.7 macro matchers got future proofed by emitting a warning to prevent certain tokens from

being allowed to follow certain fragments?, which in Rust 1.12 became a hard-error. Other
symbols or unique prefixes may be used as desired, but use of @ has started to become
widespread, so using it may aid readers in understanding your macro.

! ambiguity-restrictions

Note: in the early days of Rust the @ token was previously used in prefix position to
denote a garbage-collected pointer, back when the language used sigils to denote
pointer types. Its only current purpose is for binding names to patterns. For this,
however, it is used as an infix operator, and thus does not conflict with its use here.

Additionally, internal rules will often come before any "bare" rules, to avoid issues with
macro_rules! incorrectly attempting to parse an internal invocation as something it cannot

possibly be, such as an expression.

Performance

One downside of internal rules is that they can hurt compile times. Only one macro rule can
match any (valid) macro invocation, but the compiler must try to match all rules in order. If a
macro has many rules, there can be many such failures, and the use of internal rules will
increase the number of such failures.

Also, the @as_expr -style identifier makes rules longer, slightly increasing the amount of
work the compiler must do when matching.
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Therefore, for best performance, avoiding internal rules is best. Avoiding them often makes
complex macros easier to read, too.



Push-down Accumulation

The following macro uses push-down accumulation.

macro_rules! init_array {
[$e:expr; $n:tt] => {
{
let e = S$e;
accum! ([$n, e.clone()] -> [1])

}s

}

macro_rules! accum {
([3, $e:expr] -> [$(Sbody:tt)x]) =>
([2, $Se:expr] -> [$(Sbody:tt)*]) =>
([1, Se:expr] -> [$($Sbody:tt)*]) =>
([0, $_:expr] -> [$($body:tt)*]) =>

accum! ([2, $e] -> [$($body)* $Se,]) };
accum! ([1, $e] -> [$($body)* $e,]) };
accum! ([0, $e] -> [$($body)* $e,]) };
[$(Sbody)*] };

o m e

}

let strings: [String; 3] = dinit_array![String::from("hi!"); 3];

All syntax extensions in Rust must result in a complete, supported syntax element (such as
an expression, item, etc.). This means that it is impossible to have a syntax extension expand
to a partial construct.

One might hope that the above example could be more directly expressed like so:

macro_rules! init_array {
[$e:expr; $n:tt] => {
{
let e = $e;
[accum! ($n, e.clone())]

}s

}

macro_rules! accum {
(3, S$e:expr) => { $e, accum! (2, Se) 1};
(2, S$e:expr) => { S$e, accum! (1, Se) };
(1, S$e:expr) => { Se };

The expectation is that the expansion of the array literal would proceed as follows:

[accum! (3, e.clone())]

[e.clone(), accum! (2, e.clone())]
[e.clone(), e.clone(), accum! (1, e.clone())]
[e.clone(), e.clone(), e.clone()]

However, this would require each intermediate step to expand to an incomplete expression.
Even though the intermediate results will never be used outside of a macro context, it is still



forbidden.

Push-down, however, allows us to incrementally build up a sequence of tokens without
needing to actually have a complete construct at any point prior to completion. In the
example given at the top, the sequence of invocations proceeds as follows:

init_array! (String::from("hi!"); 3)

accum! ([3, e.clone()] -> [1])

accum! ([2, e.clone()] -> [e.clone(),])

accum! ([1, e.clone()] -> [e.clone(), e.clone(),])

accum! ([0, e.clone()] -> [e.clone(), e.clone(), e.clone(),])
[e.clone(), e.clone(), e.clone(),]

As you can see, each layer adds to the accumulated output until the terminating rule finally
emits it as a complete construct.

The only critical part of the above formulation is the use of $($body:tt)* to preserve the
output without triggering parsing. The use of ($input) -> ($output) issimply a
convention adopted to help clarify the behavior of such macros.

Push-down accumulation is frequently used as part of incremental TT munchers, as it allows
arbitrarily complex intermediate results to be constructed. Internal Rules were of use here
as well, as they simplify creating such macros.

Performance

Push-down accumulation is inherently quadratic. Consider a push-down accumulation rule
that builds up an accumulator of 100 token trees, one token tree per invocation.

e The initial invocation will match against the empty accumulator.
e The first recursive invocation will match against the accumulator of 1 token tree.
e The next recursive invocation will match against the accumulator of 2 token trees.

And so on, up to 100. This is a classic quadratic pattern, and long inputs can cause macro
expansion to blow out compile times. Furthermore, TT munchers are also inherently
quadratic over their input, so a macro that uses both TT munching and push-down
accumulation will be doubly quadratic!

All the performance advice about TT munchers holds for push-down accumulation. In
general, avoid using them too much, and keep them as simple as possible.

Finally, make sure you put the accumulator at the end of rules, rather than the beginning.
That way, if a rule fails, the compiler won't have had to match the (potentially long)
accumulator before hitting the part of the rule that fails to match. This can make a large
difference to compile times.
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Repetition Replacement

macro_rules! replace_expr {
($_t:tt $sub:expr) => {Ssub};
}

This pattern is where a matched repetition sequence is simply discarded, with the variable

being used to instead drive some repeated pattern that is related to the input only in terms
of length.

For example, consider constructing a default instance of a tuple with more than 12 elements
(the limit as of Rust 1.2).

macro_rules! tuple_default {
($(Stup_tys:ty),x) => {
(

$(
replace_expr! (
($tup_tys)
Default::default()
)
) *

}s

JETE: we could have simply used $tup_tys::default() .

Here, we are not actually using the matched types. Instead, we throw them away and replace

them with a single, repeated expression. To put it another way, we don't care what the types
are, only how many there are.



TT Bundling

macro_rules! call_a_or_b_on_tail {
((a: Sa:ident, b: $b:ident), call a: $(Stail:tt)x) => {
$a(stringify! ($($tail)x))
}s3

((a: Sa:ident, b: $b:ident), call b: $(Stail:tt)x) => {
$b(stringify! ($($tail)x))
}s

($ab:tt, S$_skip:tt $(S$tail:tt)x) => {
call_a_or_b_on_tail!($ab, $($tail)x*)
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}

fn compute_len(s: &str) -> Option<usize> {
Some(s.len())
}

fn show_tail(s: &str) -> Option<usize> {
println! ("tail: {:?}", s);

None
}
fn main() {
assert_eq! (
call_a_or_b_on_tail!(
(a: compute_len, b: show_tail),
the recursive part that skips over all these
tokens does not much care whether we will call a
or call b: only the terminal rules care.
)
None
)3
assert_eq! (
call_a_or_b_on_tail!(
(a: compute_len, b: show_tail),
and now, to justify the existence of two paths
we will also call a: its 1input should somehow
be self-referential, so let us make it return
some ninety-one!
)
Some (87)
)
}

In particularly complex recursive macros, a large number of arguments may be needed in
order to carry identifiers and expressions to successive layers. However, depending on the
implementation there may be many intermediate layers which need to forward these
arguments, but do not need to use them.



As such, it can be very useful to bundle all such arguments together into a single TT by
placing them in a group. This allows layers which do not need to use the arguments to
simply capture and substitute a single tt, rather than having to exactly capture and

substitute the entire argument group.

The example above bundles the $a and $b expressions into a group which can then be
forwarded as a single tt by the recursive rule. This group is then destructured by the
terminal rules to access the expressions.
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Building Blocks

Reusable snippets of macro_rules! macro code.



AST Coercion

The Rust parser is not very robust in the face of tt substitutions. Problems can arise when
the parser is expecting a particular grammar construct and instead finds a lump of
substituted tt tokens. Rather than attempt to parse them, it will often just give up. In these
cases, it is necessary to employ an AST coercion.

macro_rules! as_expr { ($e:expr) => {$e}
macro_rules! as_item { ($i:item) => {$i}
macro_rules! as_pat { ($p:pat) => {$p}
macro_rules! as_stmt { ($s:stmt) => {S$s}
macro_rules! as_ty { ($t:ty) => {s$t}

[ U S

as_ditem! {struct Dummy;}

fn main() {
as_stmt! (let as_pat!(_): as_ty!(_) = as_expr!(42));
}

These coercions are often used with push-down accumulation macros in order to get the
parser to treat the final tt sequence as a particular kind of grammar construct.

Note that this specific set of macros is determined by what macros are allowed to expand
to, not what they are able to capture.
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Counting

What follows are several techniques for counting in macro_rules! macros:

Note: If you are just interested in the most efficient way look here

Repetition with replacement

Counting things in a macro is a surprisingly tricky task. The simplest way is to use
replacement with a repetition match.

macro_rules! replace_expr {
($_t:tt S$sub:expr) => {Ssub};
}

macro_rules! count_tts {
($($tts:tt)x) => {Ousize $(+ replace_expr!($tts lusize))x*};
}

This is a fine approach for smallish numbers, but will likely crash the compiler with inputs of
around 500 or so tokens. Consider that the output will look something like this:

Qusize + lusize + /*x ~500 '+ lusize's */ + lusize

The compiler must parse this into an AST, which will produce what is effectively a perfectly
unbalanced binary tree 500+ levels deep.

Recursion

An older approach is to use recursion.

macro_rules! count_tts {
() => {Qusize};
($_head:tt $(Stail:tt)*) => {lusize + count_tts!($($tail)x*)};

Note: As of rustc 1.2, the compiler has grievous performance problems when large
numbers of integer literals of unknown type must undergo inference. We are using
explicitly usize -typed literals here to avoid that.
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If this is not suitable (such as when the type must be substitutable), you can help
matters by using as (e.g. 0 as $ty, 1 as $ty, etc).

This works, but will trivially exceed the recursion limit. Unlike the repetition approach, you
can extend the input size by matching multiple tokens at once.

macro_rules! count_tts {

(S_a:tt $_b:tt S_c:tt $_d:tt S$_e:tt
$_Fatt $_gitt S_h:tt $_di:tt $_j:tt
S keitt $_Tl:tt $_m:itt $_n:tt $_o:tt
$S_p:tt $S_q:tt $S_r:itt S_s:tt S_t:tt
S(stail:tt)x)

=> {20usize + count_tts!($(Stail)*)};
(S_a:tt S$S_b:tt $_c:tt $_d:tt $_e:tt
$_Fatt $_g:itt S_h:itt $_di:tt $_j:tt
S(stail:tt)x)

=> {1Ousize + count_tts!($(Stail)*)};
(S_a:tt S$S_b:tt $_c:tt $_d:tt $_e:tt
$(S$tail:tt)x*)

=> {5usize + count_tts!($(Stail)x)};
($s_a:tt
S($tail:tt)x)

=> {1lusize + count_tts!($(Stail)x)};
() => {Ousize};

fn main() {
assert_eq! (700, count_tts!(

2999999999 299999393999 332999939399 99332 II) IIIIIIINII)I

9999999999 2999933999 3329993339 9IIIINIIIIIY IIIIIINIII)

29999959995 9939999399393 393993993993 2I3IIIIINIII IIIIIIIDIID

2999999999 299999393999 33299993399 933NN IIIY DIIIIIIII)I

3999999999 29999999933 9393393339 I2IIIIIIIII IIIIIIIIID)

29999959995 9939999399393 3993293999933 II3IIIIINIII IIIIIIIDIID

9999999999 2999933999 3329993339 9IIIININIIIIY IIIIIININII)

3999999999 29999999933 9393393339 I2II3IIIIIII) IIIIIIIIID)

29999299999 299999393999 33299993399 99332 IIIY IIIIIIINII)I

9999999999 2999933999 3329993339 9IIIINIIIIIY IIIIIINIII)

// Repetition breaks somewhere after this

2999999999 299999393999 33299993399 99332 IIIY DIIIIIIII)

9999999999 2999933999 33299993339 9IIIINIIIIIY IIIIIINIII)

29999959995 9939999399393 3993293999939 II3IIIIINIII IIIIIIIDIID

2999999999 299999393999 33299993399 99332 IIIY DIIIIIINII)I

))s

This particular formulation will work up to ~1,200 tokens.



Slice length

A third approach is to help the compiler construct a shallow AST that won't lead to a stack
overflow. This can be done by constructing an array literal and calling the 1en method.

macro_rules! replace_expr {
($_t:tt S$sub:expr) => {Ssub};
}

macro_rules! count_tts {

($(stts:tt)x) => {<[()]>::len(&[$(replace_expr! (stts ())),*1)};
}

This has been tested to work up to 10,000 tokens, and can probably go much higher.

Array length

Another modification of the previous approach is to use const generics stabilized in Rust

1.51. It's only slightly slower than slice length method on 20,000 tokens and works in const
contexts.

const fn count_helper<const N: usize>(_: [(); N]) -> usize { N }

macro_rules! replace_expr {
($_t:tt $sub:expr) => { $sub }
}

macro_rules! count_tts {
($(Ssmth:tt)*) => {
count_helper ([$(replace_expr! ($smth ())),*])
}

Enum counting

This approach can be used where you need to count a set of mutually distinct identifiers.



macro_rules! count_idents {

() => {0};
($last_ident:ident, $(S$idents:ident),*x $(,)?) => {
{

#[allow(dead_code, non_camel_case_types)]

enum Idents { $($idents,)* S$last_dident }

const COUNT: u32 = Idents::$last_ident as u32 + 1;
COUNT

s

This method does have two drawbacks. As implied above, it can only count valid identifiers
(which are also not keywords), and it does not allow those identifiers to repeat.

Bit twiddling
Another recursive approach using bit operations:

macro_rules! count_tts {
(O =>1{01};
($odd:tt $(Sa:tt $Sb:tt)x) => { (count_tts!($($a)*) << 1) | 1 };
($(Sa:tt Seven:tt)*) => { count_tts!($(Sa)*) << 1 };

This approach is pretty smart as it effectively halves its input whenever its even and then
multiplying the counter by 2 (or in this case shifting 1 bit to the left which is equivalent). If
the input is uneven it simply takes one token tree from the input or s the token tree to the
previous counter which is equivalent to adding 1 as the lowest bit has to be a 0 at this point
due to the previous shifting. Rinse and repeat until we hit the base rule () => o.

The benefit of this is that the constructed AST expression that makes up the counter value
will grow with a complexity of 0(log(n)) instead of 0(n) like the other approaches. Be
aware that you can still hit the recursion limit with this if you try hard enough. Credits for
this method go to Reddit user vatoRust .

Let's go through the procedure by hand once:

count_tts! (0 6 0 0 0 06 06 0 0 0);
This invocation will match the third rule due to the fact that we have an even number of
token trees(10). The matcher names the odd token trees in the sequence $a and the even

ones $even but the expansion only makes use of $a, which means it effectively discards all
the even elements cutting the input in half. So the invocation now becomes:

count_tts! (0 0 0 0 0) << 1;


https://www.reddit.com/r/rust/comments/d3yag8/the_little_book_of_rust_macros/

This invocation will now match the second rule as its input is an uneven amount of token
trees. In this case the first token tree is discarded to make the input even again, then we also
do the halving step in this invocation again since we know the input would be even now

anyways. Therefore we can count 1 for the uneven discard and multiply by 2 again since we
also halved.

((count_tts! (0 0) << 1) | 1) << 1;
((count_tts!(0) << 1 << 1) | 1) << 1;
((((count_tts!() << 1) | 1) << 1 << 1) | 1) << 1;

((((@ << 1) | 1) << 1 << 1) | 1) << 1;

Now to check if we expanded correctly manually we can use a one of the tools we
introduced for debugging . When expanding the macro there we should get:

((((0 << 1) | 1) << 1 << 1) | 1) << 1;

That's the same so we didn't make any mistakes, great!


https://veykril.github.io/tlborm/decl-macros/minutiae/debugging.html

Abacus Counters

Provisional: needs a more compelling example. Matching nested groups that are not
denoted by Rust groups is sufficiently unusual that it may not merit inclusion.

Note: this section assumes understanding of push-down accumulation and
incremental TT munchers.

macro_rules! abacus {

((- $(Smoves:tt)*) -> (+ $(Scount:tt)*x)) => {
abacus! (($(Smoves)*) -> ($(Scount)x))

}5

((-= $(Smoves:tt)*) -> ($(Scount:tt)*)) => {
abacus! (($(Smoves)*) -> (- $($count)x*))

}s

((+ $(Smoves:tt)*) -> (- $(Scount:tt)*x)) => {
abacus! (($S(Smoves)*) -> (S(Scount)x))

}s

((+ $(Smoves:tt)*x) -> ($(Scount:tt)*)) => {
abacus! (($(Smoves)x) -> (+ $(Scount)x))

}3

// Check if the final result is zero.
(() > () => { true };
(() => ($($count:tt)+)) => { false };

}

fn main() {
let equals_zero = abacus! ((++-+-+++-—++-——++-———+) -> ());
assert_eq! (equals_zero, true);

}

This technique can be used in cases where you need to keep track of a varying counter that

starts at or near zero, and must support the following operations:

A value of n is represented by n instances of a specific token stored in a group. Modifications
are done using recursion and push-down accumulation. Assuming the token used is x, the

e Increment by one.
e Decrement by one.
e Compare to zero (or any other fixed, finite value).

operations above are implemented as follows:

e Increment by one: match ($($count:tt)*) , substitute (x $($count)x) .
e Decrement by one: match (x $(Scount:tt)x*) , substitute ($(Scount)x) .
e Compare to zero: match ().
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e Compare to one: match (x) .
e Compare to two: match (x x) .
e (andsoon...)

In this way, operations on the counter are like flicking tokens back and forth like an abacus.’

T This desperately thin reasoning conceals the real reason for this name: to avoid having yet another
thing with "token" in the name. Talk to your writer about avoiding semantic satiation today!
In fairness, it could also have been called "unary counting".

In cases where you want to represent negative values, -n can be represented as n instances
of a different token. In the example given above, +n is stored as n + tokens, and -m is stored
asm - tokens.

In this case, the operations become slightly more complicated; increment and decrement
effectively reverse their usual meanings when the counter is negative. To which given + and
- for the positive and negative tokens respectively, the operations change to:

e Increment by one:
o match (), substitute (+) .
o match (- $($count:tt)x), substitute ($(Scount)x*) .
o match ($($count:tt)+) ,substitute (+ $($count)+) .
e Decrement by one:
o match (), substitute (-) .
o match (+ $($count:tt)x) , substitute ($(Scount)x*) .
o match ($($count:tt)+), substitute (- $($count)+) .
e Compare to 0: match ().
e Compare to +1: match (+) .
e Compare to-1: match (-).
e Compare to +2: match (++) .
e Compare to -2: match (--) .
e (andsoon...)

Note that the example at the top combines some of the rules together (for example, it
combines incrementon () and ($($count:tt)+) into anincrementon ($($count:tt)x) ).

If you want to extract the actual value of the counter, this can be done using a regular
counter macro. For the example above, the terminal rules can be replaced with the
following:


https://en.wikipedia.org/wiki/Semantic_satiation
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macro_rules! abacus {

/] ...

// This extracts the counter as an integer expression.
() > () => {e};
(() => (- $($count:tt)*)) => {
- ( count_tts!($( Scount_tts:tt )*x) )
15
(() => (+ $(Scount:tt)*)) => {
count_tts! ($( Scount_tts:tt )x*)
}s
}

// One of the many token tree counting macros in the counting chapter
macro_rules! count_tts {

/] ...
}

JETE: strictly speaking, the above formulation of abacus! is needlessly complex. It can

be implemented much more efficiently using repetition, provided you do not need to
match against the counter's value in a macro:

macro_rules! abacus {
(=) => {-1};
(+) => {1};
($( Smoves:tt )*x) => {
0 $(+ abacus! (Smoves))x

}




Parsing Rust

Parsing some of Rust's items can be useful in certain situations. This section will show a few
macros that can parse some of Rust's more complex items like structs and functions to a
certain extent. The goal of these macros is not to be able to parse the entire grammar of the
items but to parse parts that are in general quite useful without being too complex to parse.
This means we ignore things like generics and such.

The main points of interest of these macros are their matchers . The transcribers are only
there for example purposes and are usually not that impressive.

Function

macro_rules! function_item_matcher {

(

$( #[Smeta:meta] )=
// M~~~attributes~~~~"
$vis:vis fn $name:ident ( $( $arg_name:ident : Sarg_ty:ty ),*x $(,)? )

// Nommmmmsomn argument list~~~~~~~~~omnnns A
$( —> $ret_ty:ty )?

// A~~~return type~~~A~
{ $(sttatt)* 3

/1 Aeennmbody~nr~ A

) => {

$( #[$meta] )x
$vis fn $name ( $( $arg_name : Sarg_ty ),* ) $( -> Sret_ty )? { $($tt)x

A simple function matcher that ignores qualifiers like unsafe, async, ... as well as generics
and where clauses. If parsing those is required it is likely that you are better off using a proc-
macro instead.

This lets you for example, inspect the function signature, generate some extra things from it
and then re-emit the entire function again. Kind of like a perive proc-macro but weaker

and for functions.

Ideally we would like to use a pattern fragment specifier instead of an ident for the
arguments but this is currently not allowed. Fortunately people don't use non-identifier
patterns in function signatures that often so this is okay(a shame, really).




Method

The macro for parsing basic functions is nice and all, but sometimes we would like to also
parse methods, functions that refer to their object via some form of self usage. This
makes things a bit trickier:



macro_rules! method_item_matcher {

// self

(
$( #[Smeta:meta] )=
// M~~~attributes~~~~7

$vis:vis fn $name:ident ( $self:ident $(, $Sarg_name:ident :

)x $(5)? )
/1
listr~~rrrvvmr v v A
$( > $ret_ty:ty )?
// A~~~return type~~~7
{ $(sttott)* 3
/1 Arvmenbody e
) => {

$( #[Smeta] )x

$vis fn Sname ( $self $(, $arg_name

$(stt)* }
}s
// mut self
(

$( #[Smeta:meta] )=*

$arg_ty:ty

~~~~~~ argument

: Sarg_ty )x ) $( -> Sret_ty )? {

$vis:vis fn $name:ident ( mut $self:ident $(, $arg_name:ident :

$arg_ty:ty )*x $(,)? )
$( > $ret_ty:ty )?
{ $(Stt:tt)* }
) => {
$( #[Smeta] )=

$vis fn Sname ( mut $self $(, $arg_name :

{ $(stt)x }
s

// &self
(
$( #[Smeta:meta] )x*
$vis:vis fn $name:ident
$arg_ty:ty )*x $(,)? )
$( —> $Sret_ty:ty )?
{ $(stt:tt)* }
) => {
$( #[Smeta] )=
$vis fn $name ( & S$self
$(stt)* }
13

// &mut self
(
$( #[Smeta:meta] )=
$vis:vis fn $name:ident
Sarg_ty:ty )x $(,)? )
$( -> Sret_ty:ty )?
{ $(stt:tt)* }
) => {
$( #[Smeta] )*

$vis fn $name ( &mut $self $(, Sarg_name :

)7 { $(stt)x 3
}

$arg_ty )* ) $( -> S$ret_ty )?

( & $self:ident $(, $arg_name:ident :

$(, $arg_name :

$arg_ty )* ) $( -> Sret_ty )? {

( &mut $self:ident $(, $arg_name:ident :

$arg_ty )* ) $( -> $ret_ty



The four rules are identical except for the self receiver on both sides of the rule, which is
self, mut self, &self,and &mut self.You might not need all four rules.

$self:ident must be used in the matcher instead of a bare self . Without that, uses of
self in the body will cause compile errors, because a macro invocation can only access
identifiers it receives from parameters.



Struct

macro_rules! struct_item_matcher {
// Unit-Struct
(
$( #[Smeta:meta] )x*
// M~~~attributes~~~~7
$vis:vis struct $name:-ident;
) => |
$( #[$meta] )x
$vis struct $name;

}s

// Tuple-Struct
(
$( #[Smeta:meta] )=
// "M~~~attributes~~~~7
Svis:vis struct $name:ident (

$(
$( #[$field_meta:meta] )x*
// A~~~fjeld attributes~~~~~
$field_vis:vis $field_ty:ty
// N a single field~~~~~~ A
,*
$(,)? )3

) = {
$( #[$meta] )=
Svis struct $name (
$(
$( #[$field_meta] )=*
$field_vis $field_ty
) 5%
)
}s

// Named-Struct
(
$( #[Smeta:meta] )=*
// M~~~attributes~~~~7
Svis:vis struct Sname:ident {

$(
$( #[$field_meta:meta] )x*
// A~v~~field attributes~~~1A
$field_vis:vis $field_name:ident : S$field_ty:ty
// Avmmmmmmcmmvcmm~ s a single field~~~~~~~mrmmnonn A
) s %
$(,)? 1}

) => {
$( #[$meta] )*
Svis struct Sname {
$(
$( #[$field_meta] )~
$field_vis $field_name : $field_ty

) 5%



Enum

Parsing enums is a bit more complex than structs so we will finally make use of some of the
patterns we have discussed, Incremental TT Muncher and Internal Rules. Instead of just
building the parsed enum again we will merely visit all the tokens of the enum, as rebuilding
the enum would require us to collect all the parsed tokens temporarily again via a Push

Down Accumulator.
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macro_rules! enum_item_matcher {
// tuple variant
(@variant Svariant:ident (

$(
$( #[$field_meta:meta] )x*
// A~~~field attributes~~~~A
$field_vis:vis $field_ty:ty
// N a single field~~~~~~ A
)o*x $(5)2

//V~~rest of dinput~~Vv
) $(, $(stt:tt)x )?2 ) => {

// process rest of the enum

$( enum_item_matcher! (@variant $( $tt )x) )?
}s
// named variant
(@variant Svariant:ident {

$(
$( #[S$field_meta:meta] )x*
// A~~~field attributes~~~!A7
$field_vis:vis $field_name:ident : S$field_ty:ty
// A R L a single field~~~~~~~mmmmnonn A
)s*x $(,5)7?

//V~~rest of dinput~~v
}S(, $(sttitt)x )? ) => {
// process rest of the enum
$( enum_item_matcher! (@variant $( $tt )*x) )?
}s
// unit variant
(@variant $variant:ident $(, S($tt:tt)x )? ) => {
// process rest of the enum
$( enum_item_matcher! (@variant $( $tt )*x) )?
}s
// trailing comma
(@variant ,) => {};
// base case
(@variant) => {};
// entry point

(

$( #[Smeta:meta] )=

Svis:vis enum $name:ident {

$($ttott)«

}
) => {

enum_item_matcher! (@variant $(S$tt)x*)
}s



Macros 2.0

RFC: rfcs#1584
Tracking Issue: rust#39412
Feature:. #![feature(decl_macro)]

While not yet stable(or rather far from being finished), there is proposal for a new
declarative macro system that is supposed to replace macro_rules! dubbed declarative
macros 2.0, macro, decl_macro or confusingly also macros-by-example .

This chapter is only meant to quickly glance over the current state, showing how to use this
macro system and where it differs. Nothing described here is final or complete, and may be
subject to change.

Syntax

We'll do a comparison between the macro and macro_rules syntax for two macros we
have implemented in previous chapters:

#![feature(decl_macro)]

macro_rules! replace_expr_ {
($_t:tt S$sub:expr) => { $sub }

}

macro replace_expr($_t:tt $sub:expr) {
$sub

}

macro_rules! count_tts_ {
() =>{01};
($odd:tt $(Sa:tt $b:tt)*) => { (count_tts!($(Sa)*x) << 1) | 1 };
($(Sa:tt Seven:tt)*) => { count_tts!($(Sa)*) << 1 };

}

macro count_tts {
() => {01},
($odd:tt $(Sa:tt Sb:tt)x) => { (count_tts!($($a)*) << 1) | 1},
($(Sa:tt Seven:tt)*) => { count_tts!($(Sa)*) << 1 },

}

As can be seen, they look very similar, with just a few differences as well as that macro s
have two different forms.

Let's inspect the count_tts macro first, as that one looks more like what we are used to. As
can be seen, it practically looks identical to the macro_rules version with two exceptions, it


https://github.com/rust-lang/rfcs/blob/master/text/1584-macros.md
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uses the macro keyword and the rule separatorisa , instead ofa ;.

There is a second form to this though, which is a shorthand for macros that only have one
rule. Taking a look at replace_expr we can see that in this case we can write the definition

in a way that more resembles an ordinary function. We can write the matcher directly after
the name followed by the transcriber, dropping a pair of braces and the => token.

Syntax for invoking macro s is the same as for macro_rules and function-like procedural
macros, the name followed by a ! followed by the macro input token tree.

macro are proper items

Unlike with macro_rules macros, which are textually scoped and require #[macro_export]
(and potentially a re-export) to be treated as an item, macro macros behave like proper rust
items by default.

As such, you can properly qualify them with visibility specifiers like pub, pub(crate),
pub(in path) and the like.

Hygiene

Hygiene is by far the biggest difference between the two declarative macro systems. Unlike
macro_rules Which have mixed site hygiene, macro have definition site hygiene, meaning

they do not leak identifiers outside of their invocation.

As such the following compiles with a macro_rules macro, but fails with a macro definition:


https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html

#![feature(decl_macro)]
// try uncommenting the following line, and commenting out the line right after

macro_rules! foo {
// macro foo {
($name: ident) => {
pub struct $name;

impl S$name {
pub fn new() -> $name {

$name
}
}

}
}
foo! (Foo);
fn main() {

// this fails with a “macro’, but succeeds with a "macro_rules’

let foo = Foo::new();
}

There may be plans to allow escaping hygiene for identifiers(hygiene bending) in the future.



Procedural Macros

Note: This section is still very incomplete!

This chapter will introduce Rust's second syntax extension type, procedural macros.

As with the declarative macros chapter, this one is also split into a methodical and a (WIP)
practical subchapter with the former being a more formal introduction and the latter being
a more practical oriented one.

A lot of the basic information covered has been sourced from the rust reference, as most
knowledge about procedural macros is currently located there.
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A Methodical Introduction

This chapter will introduce Rust's procedural macro system by explaining the system as a
whole.

Unlike a declarative macro, a procedural macro takes the form of a Rust function taking in a
token stream(or two) and outputting a token stream.

A proc-macro is at its core just a function exported from a crate with the proc-macro crate
type, so when writing multiple proc macros you can have them all live in one crate.

Note: When using Cargo, to define a proc-macro crate you define and set the
1ib.proc-macro keyinthe cargo.toml to true.

[lib]
proc-macro = true

A proc-macro type crate implicitly links to the compiler-provided proc_macro crate, which
contains all the things you need to get going with developing procedural macros. The two
most important types exposed by the crate are the TokenStream, which are the proc-macro
variant of the already familiar token trees as well as the span, which describes a part of
source code used primarily for error reporting and hygiene. See the Hygiene and Spans
chapter for more information.

As proc-macros therefore are functions living in a crate, they can be addressed as all the
other items in a Rust project. All that is required is to add the crate to the dependency graph
of a project and bring the desired item into scope.

Note: Procedural macros invocations still run at the same stage in the compiler
expansion-wise as declarative macros, just that they are standalone Rust programs
that the compiler compiles, runs, and finally either replaces or appends to.

Types of procedural macros

With procedural macros, there actually exists 3 different kinds with each having slightly
different properties.

e function-like proc-macros which are used to implement $name ! $arg invocable
macros
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e qttribute proc-macros which are used to implement #[$arg] attributes
e (derive proc-macros which are used to implement a derive, an inputto a #[derive(..)]
attribute

At their core, all 3 work almost the same with a few differences in their inputs and output
reflected by their function definition. As mentioned all a procedural macro really is, is a
function that maps a token stream so let's take a quick look at each basic definition and
their differences.

function-like

#[proc_macro]
pub fn my_proc_macro(input: TokenStream) -> TokenStream {
TokenStream: :new()

}

attribute

#[proc_macro_attribute]
pub fn my_attribute(input: TokenStream, annotated_-item: TokenStream) ->
TokenStream {

TokenStream: :new()

}

derive

#[proc_macro_derive(MyDerive)]
pub fn my_derive(annotated_item: TokenStream) -> TokenStream {
TokenStream: :new()

}

As shown, the basic structure is the same for each, a public function marked with an
attribute defining its procedural macro type returning a TokenStream. Note how the return
type is a TokenStream and not a result or something else that gives the notion of being
fallible. This does not mean that proc-macros cannot fail though, in fact they have two ways
of reporting errors, the first one being to panic and the second to emita compile_error!

invocation. If a proc-macro panics the compiler will catch it and emit the payload as an error
coming from the macro invocation.

Beware: The compiler will happily hang on endless loops spun up inside proc-macros
causing the compilation of crates using the proc-macro to hang as well.



https://doc.rust-lang.org/std/macro.compile_error.html

Function-like

Function-like procedural macros are invoked like declarative macros that is makro! (..) .

This type of macro is the simplest of the three though. It is also the only one which you can't
differentiate from declarative macros when solely looking at the invocation.

A simple skeleton of a function-like procedural macro looks like the following:

use proc_macro::TokenStream;

#[proc_macro]

pub fn tlborm_fn_macro(input: TokenStream) -> TokenStream {
input

}

As one can see this is in fact just a mapping from one TokenStream to another where the
input will be the tokens inside of the invocation delimiters, e.g. for an example invocation
foo! (bar) the input token stream would consist of the bar token. The returned token
stream will replace the macro invocation.

For this macro type the same placement and expansion rules apply as for declarative
macros, that is the macro must output a correct token stream for the invocation location.
Unlike with declarative macros though, function-like procedural macros do not have certain
restrictions imposed on their inputs though. That is the restrictions for what may follow
fragment specifiers listed in the Metavariables and Expansion Redux chapter listed is not
applicable here, as the procedural macros work on the tokens directly instead of matching
them against fragment specifiers or similar.

With that said it is apparent that the procedural counter part to these macros is more
powerful as they can arbitrarily modify their input, and produce any output desired as long
as its within the bounds of the language syntax.

Usage example:

use tlborm_proc::tlborm_attribute;

fn foo() {
tlborm_attribute! (be quick; time is mana);

}
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Attribute

Attribute procedural macros define new outer attributes which can be attached to items.
This type can be invoked with the #[attr] or #[attr(..)] syntax where .. is an arbitrary
token tree.

A simple skeleton of an attribute procedural macro looks like the following:

use proc_macro::TokenStream;

#[proc_macro_attribute]
pub fn tlborm_attribute(input: TokenStream, annotated_qitem: TokenStream) ->
TokenStream {

annotated_-item

}

Of note here is that unlike the other two procedural macro kinds, this one has two input
parameters instead of one.

e The first parameter is the delimited token tree following the attribute's name,
excluding the delimiters around it. It is empty if the attribute is written bare, that is just
a name without a (TokenTree) followingit, e.g. #[attr] .

e The second token stream is the item the attribute is attached to without the attribute
this proc macro defines. As this is an active attribute, the attribute will be stripped
from the item before it is being passed to the proc macro.

The returned token stream will replace the annotated item fully. Note that the replacement
does not have to be a single item, it can be 0 or more.

Usage example:

use tlborm_proc::tlborm_attribute;

#[tlborm_attribute]
fn foo() {}

#[tlborm_attribute(attributes are pretty handsome) ]
fn bar() {}


https://doc.rust-lang.org/reference/attributes.html#active-and-inert-attributes

Derive

Derive procedural macros define new inputs for the derive attribute. This type can be
invoked by feeding it to a derive attribute's input, e.g. #[derive(TlbormDerive)] .

A simple skeleton of a derive procedural macro looks like the following:

use proc_macro::TokenStream;

#[proc_macro_derive(TlbormDer-ive)]
pub fn tlborm_derive(item: TokenStream) -> TokenStream {
TokenStream: :new()

}

The proc_macro_derive is a bit more special in that it requires an extra identifier, this
identifier will become the actual name of the derive proc macro. The input token stream is
the item the derive attribute is attached to, that is, it will always be an enum, struct or
union as these are the only items a derive attribute can annotate. The returned token
stream will be appended to the containing block or module of the annotated item with the
requirement that the token stream consists of a set of valid items.

Usage example:

use tlborm_proc::TlbormDerive;

#[derive(TlbormDerive)]
struct Foo;

Helper Attributes

Derive proc macros are a bit more special in that they can add additional attributes visible
only in the scope of the item definition. These attributes are called derive macro helper
attributes and are inert. Their purpose is to give derive proc macros additional
customizability on a per field or variant basis, that is these attributes can be used to
annotate fields or enum variants while having no effect on their own. As they are dnert
they will not be stripped and are visible to all macros.

They can be defined by adding an attributes(helper0, helperl, ..) argumentto the
proc_macro_derive attribute containing a comma separated list of identifiers which are the
names of the helper attributes.

Thus a simple skeleton of a derive procedural macro with helper attributes looks like the
following:
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use proc_macro::TokenStream;

#[proc_macro_derive(TlbormDerive, attributes(tlborm_helper))]
pub fn tlborm_derive(item: TokenStream) -> TokenStream {
TokenStream: :new()

}

That is all there is to helper attributes, to consume them in the proc macro the
implementation will then have to check the attributes of fields and variants to see whether
they are attributed with the corresponding helper. It is an error to use a helper attribute if
none of the used derive macros of the given item declare it as such, as the compiler will then
instead try to resolve it as a normal attribute.

Usage example:

use tlborm_proc::TlbormDerive;

#[derive(TlbormDerive)]

struct Foo {
#[tlborm_helper]
field: u32

}

#[derive(TlbormDerive)]
enum Bar {
#[tlborm_helper]
Variant { #[tlborm_helper] field: u32 }



Third-Party Crates

Note: Crates beyond the automatically linked proc_macro crate are not required to
write procedural macros. The crates listed here merely make writing them simpler and
more concise, while potentially adding to the compilation time of the procedural macro
due to added dependencies.

As procedural macros live in a crate they can naturally depend on (crates.io) crates. turns
out the crate ecosystem has some really helpful crates tailored towards procedural macros
that this chapter will quickly go over, most of which will be used in the following chapters to
implement the example macros. As these are merely quick introductions it is advised to look
at each crate's documentation for more in-depth information if required.

proc-macro2

proc-macro2 , the successor of the proc_macro crate! Or so you might think but that is of
course not correct, the name might be a bit misleading. This crate is actually just a wrapper
around the proc_macro crate serving two specific purposes, taken from the documentation:

e Bring proc-macro-like functionality to other contexts like build.rs and main.rs.
e Make procedural macros unit testable.

As the proc_macro crate is exclusive to proc_macro type crates, making them unit testable
or accessing them from non-proc macro code is next to impossible. With that in mind the
proc-macro2 crate mimics the original proc_macro crate's api, acting as a wrapper in proc-
macro crates and standing on its own in non-proc-macro crates. Hence it is advised to build
libraries targeting proc-macro code to be built against proc-macro2 instead as that will
enable those libraries to be unit testable, which is also the reason why the following listed
crates take and emit proc-macro2::TokenStream s instead. When a proc_macro token
stream is required, one can simply .into() the proc-macro2 token stream to get the
proc_macro version and vice-versa.

Procedural macros using the proc-macro2 crate will usually import the proc-
macro2::TokenStream in an aliased form like use proc-macro2::TokenStream as

TokenStream2 .


https://doc.rust-lang.org/proc_macro/
https://crates.io/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/*/proc_macro2/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/proc-macro2/*/proc_macro2/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/proc-macro2/*/proc_macro2/
https://docs.rs/proc-macro2/1.0.27/proc_macro2/struct.TokenStream.html

quote

The quote crate mainly exposes just one macro, the quote! macro.

This little macro allows you to easily create token streams by writing the actual source out as
syntax while also giving you the power of interpolating tokens right into the written syntax.
Interpolation can be done by using the #local syntax where local refers to a local in the
current scope. Likewise #( #local )* can be used to interpolate over an iterator of types
that implement ToTokens , this works similar to declarative macro_rules! repetitions in that
they allow a separator as well as extra tokens inside the repetition.

let name = /* some identifier x/;
let exprs = /% an +iterator over expressions tokenstreams x/;
let expanded = quote! {
impl SomeTrait for #name { // #name 1interpolates the name local from above
fn some_function(&self) -> usize {
#( #exprs )* [/ #name 1interpolates exprs by iterating the -iterator

}
s

This a very useful tool when preparing macro output avoiding the need of creating a token
stream by inserting tokens one by one.

Note: As stated earlier, this crate makes use of proc_macro2 and thus the quote!
macro returns a proc-macro2::TokenStream.

syn

The syn crate is a parsing library for parsing a stream of Rust tokens into a syntax tree of
Rust source code. It is a very powerful library that makes parsing proc-macro input quite a
bit easier, as the proc_macro crate itself does not expose any kind of parsing capabilities,

merely the tokens. As the library can be a heavy compilation dependency, it makes heavy

use of feature gates to allow users to cut it as small as required.

So what does it offer? A bunch of things.

First of all it has definitions and parsing for all standard Rust syntax nodes(when the full
feature is enabled), as well as a DeriveInput type which encapsulates all the information a
derive macro gets passed as an input stream as a structured input(requires the derive
feature, enabled by default). These can be used right out of the box with the
parse_macro_input! macro(requires the parsing and proc-macro features, enabled by
default) to parse token streams into these types.


https://docs.rs/quote/*/quote/
https://docs.rs/quote/*/quote/
https://docs.rs/quote/1/quote/macro.quote.html
https://docs.rs/quote/1/quote/macro.quote.html#interpolation
https://docs.rs/quote/1/quote/trait.ToTokens.html
https://docs.rs/syn/*/syn/
https://docs.rs/syn/*/syn/
https://doc.rust-lang.org/proc_macro/
https://docs.rs/syn/1/syn/struct.DeriveInput.html
https://docs.rs/syn/1/syn/macro.parse_macro_input.html

If Rust syntax doesn't cut it, and instead one wishes to parse custom non-Rust syntax the
crate also offers a generic parsing API, mainly in the form of the Parse trait(requires the
parsing feature, enabled by default).

Aside from this the types exposed by the library keep location information and spans which
allows procedural macros to emit detailed error messages pointing at the macro input at the
points of interest.

As this is again a library for procedural macros, it makes use of the proc_macro2 token
streams and spans and as such, conversions may be required.


https://docs.rs/syn/1/syn/parse/index.html
https://docs.rs/syn/1/syn/parse/trait.Parse.html

Hygiene and Spans

This chapter talks about procedural macro hygiene and the type that encodes it, Span.

Every token in @ TokenStream has an associated span holding some additional info. A span,
as its documentation states, is A region of source code, along with macro expansion
information . It points into a region of the original source code(important for displaying
diagnostics at the correct places) as well as holding the kind of hygiene for this location. The
hygiene is relevant mainly for identifiers, as it allows or forbids the identifier from
referencing things or being referenced by things defined outside of the invocation.

There are 3 kinds of hygiene(which can be seen by the constructors of the span type):

e definition site (unstable): A span that resolves at the macro definition site.
Identifiers with this span will not be able to reference things defined outside or be
referenced by things outside of the invocation. This is what one would call "hygienic".

* mixed site:Aspan that hasthe same hygiene as macro_rules declarative macros,
that is it may resolve to definition site or call site depending on the type of identifier.
See here for more information.

e call site:Aspan that resolves to the invocation site. Identifiers in this case will
behave as if written directly at the call site, that is they freely resolve to things defined
outside of the invocation and can be referenced from the outside as well. This is what
one would call "unhygienic".


https://veykril.github.io/tlborm/syntax-extensions/hygiene.html
https://doc.rust-lang.org/proc_macro/struct.Span.html
https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.def_site
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.mixed_site
https://veykril.github.io/tlborm/decl-macros/minutiae/hygiene.html
https://doc.rust-lang.org/proc_macro/struct.Span.html#method.call_site

Glossary

A place for obscure words and their descriptions. If you feel like there is an important word
missing here, please open an issue or a pull request.

Function-like macro

A function like macro describes a syntax extension that can be invoked via the form
identifier!(...) .Itis called this way due to its resemblance of a function call.

Syntax Extension


https://github.com/Veykril/tlborm/issues/new

